
14th International Kawasaki Disease Symposium (IKDS)

Montreal, Canada Hotel Bonaventure

14th International Kawasaki Disease Symposium (IKDS)

14th IKDS Co-Presidents

Adriana Tremoulet

San Diego, CA, USA

Nagib Dahdah Montreal, Canada

14th International Kawasaki Disease Symposium (IKDS)

Science Digest Team

ikds.org

Audrey Dionne Boston, MA, USA

Matthew D. Elias Philadelphia, PA, USA

Luisa B. Gámez-González Chihuahua, México

Fujito Numano Niigata, Japan

Rakesh Kumar Pilania Chandigarh, India

Alan Wang Chicago, IL, USA

Take Home Messages – Day 1 14th International Kawasaki Disease Symposium

August 27, 2024

Dra. Luisa Berenise Gámez González Pediatric Immunology Professor of Immunology, Faculty of Medicine Chihuahua's University Hospital Infantil de Especialidades de Chihuahua

Matthew D. Elias, MD Clinical Associate Professor of Pediatrics Attending Physician, Division of Cardiology Co-Medical Director,

Cardiology Kawasaki Disease Program The Children's Hospital of Philadelphia

Conflict-of-Interest Disclosures

Presenters:	Luisa Berenise Gámez González Matthew D. Elias
Any direct financial payments including receipt of honoraria	None
Membership on advisory boards or speakers' bureaus	None
Funded grants or clinical trials	None
All other investments or relationships that could be seen by a reasonable, well-informed participant as having the potential to influence the content of the educational activity	None

Day 1 Summary

Around the Globe

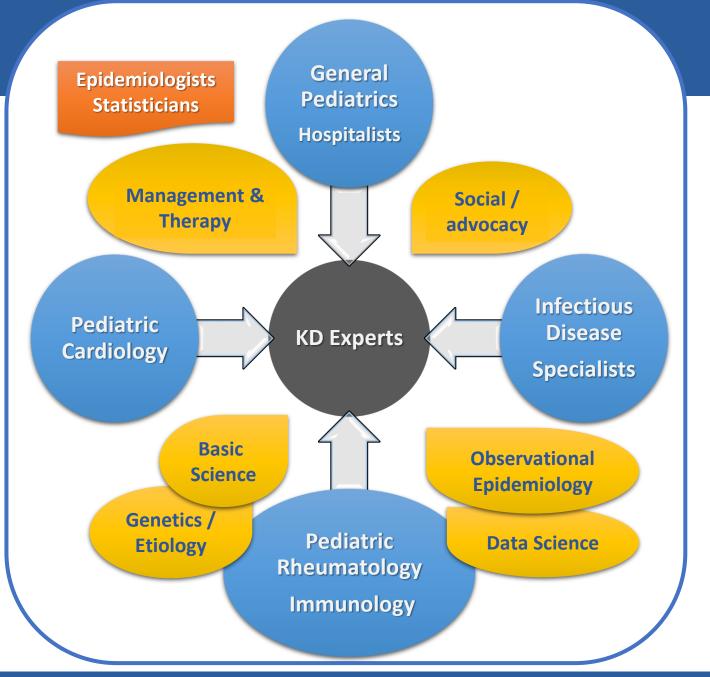
Etiology and Basic Science

Tomisaku Kawasaki Memorial Lecture

Genetics and Environmental Science

Poster Sessions

Acute KD Imaging

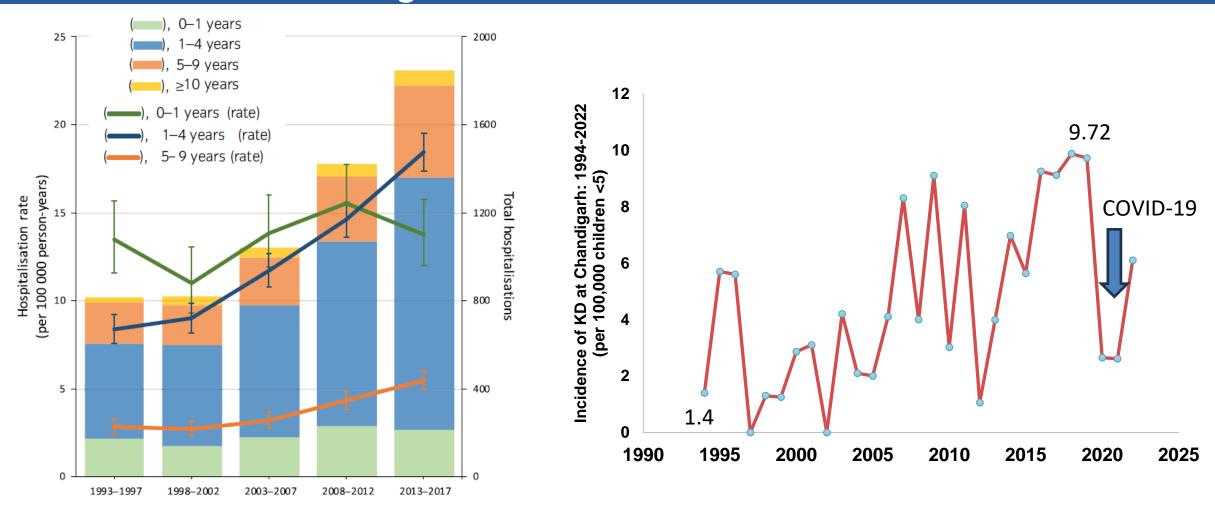

Around the Globe: IKDS Survey Responses

Groups – Country / Region	Year	Countries	Institutions	Members
Nationwide Survey of Epidemiology of KD in South Korea (guidance of the Korean Society of KD) South Korea	1991	1	90	10-20
Registro Regionale della Malattia di Kawasaki Emilia Romagna Italy	2002	1	10	10-20
Japan Kawasaki Disease Genome Consortium (JKDGC) Japan	2009	1	40	20-50
Kawasaki Study Group Netherland	2012	1	18	10-20
REKAMLATINA (Red de Enfermedad de Kawasaki en América Latina) Latin-America	2013	20	86	100 +
International Kawasaki Disease Registry (IKDR) N-Am / International	2013	8	51	20-50
SOCIETI UK	2015	1	10	20-50
KAWARACE Spain	2015	1	95	100 +
Kawasaki Disease Comparative Effectiveness (KIDCARE) trial USA	2016	1	30	20-50
Asia Pacific Kawasaki Disease Association Eastern Asia / South-Pacific	2016	14	30	50-100
Genetic Prediction of KD Treatment Resistance (GENESYS) USA / North-Am	2018	2	6	10-20
Indian Society of Kawasaki Disease India	2018	1	10	50-100
Cardiac Catheterization in Kawasaki Disease registry (CCinKD registry) Germany / Europe	2019	6	16	20-50
JIR COHORT KD (KAWANET) and MIS-C Europe	2019	11	87	20-50
AMED Study Group Japan	2020	1	150	50-100
Cape Town Kawasaki Group South Africa	2020	1	2	10-20
COVASAKI network Italy	2020	1	18	20-50
KAWARABI (Kawasaki Disease Arab Initiative) MENA	2021	14	24	20-50
Kawasaki disease Sweden (SwedKD) Sweden	2021	1	1	10-20
Collaborated Surveillance by 4 Associations Working for Pediatric Critical Medicine (JMKsurvey) Japan	2022	1	50	10-20

Adapted from presentation by Dr. Nagib Dahdah

Around the Globe: IKDS Survey Responses

Groups – Country / Region		Year	Countries	Institutions	Members
Nationwide Survey of Epidemiology of KD in South Korea (guidance of the Korean Society of KD)	South K	(orea 1991	1	90	10-20
Registro Regionale della Malattia di Kawasaki Emilia Romagna Italy		2002	1	10	10-20
Japan Kawasaki Disease Genome Consortium (JKDGC) Japan		2009	1	40	20-50
Kawasaki Study Group Netherland		2012	1	18	10-20
REKAMLATINA (Red de Enfermedad de Kawasaki en América Latina) Latin-America				••	- po +
International Kawasaki Disease Registry (IKDR) N-Am / International	N	Aajority of	KD organ	izations	D-50
SOCIETI UK	'`		•		D-50
KAWARACE Spain	 Organized governance Steering committee 			00 +	
Kawasaki Disease Comparative Effectiveness (KIDCARE) trial USA				0-50	
Asia Pacific Kawasaki Disease Association Eastern Asia / South-Pacific Genetic Prediction of KD Treatment Resistance (GENESYS) USA / North-Am OF Steering Committee No formal funding			5	-100	
)-20	
Indian Society of Kawasaki Disease India Conding Sochestariantics in Kawasaki Disease India • Peer-reviewed publications			lications	-100	
Cardiac Catheterization in Kawasaki Disease registry (CCinKD registry) Germany / Europe		reerievie	weu pub	illations	P-50
JIR COHORT KD (KAWANET) and MIS-C Europe		2019	11	87	20-50
AMED Study Group Japan		2020	1	150	50-100
Cape Town Kawasaki Group South Africa		2020	1	2	10-20
COVASAKI network Italy		2020	1	18	20-50
KAWARABI (Kawasaki Disease Arab Initiative) MENA		2021	14	24	20-50
Kawasaki disease Sweden (SwedKD) Sweden		2021	1	1	10-20
Collaborated Surveillance by 4 Associations Working for Pediatric Critical Medicine (JMKsurvey)	apan	2022	1	50	10-20

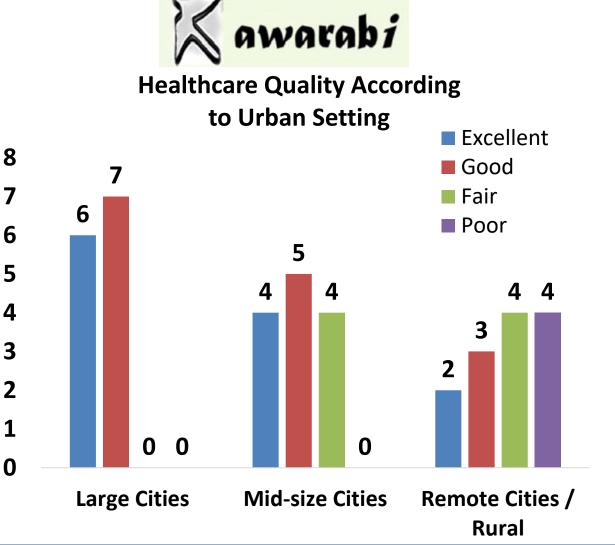

Collaboration

Shared vision

Expand the expertise circle

Around the Globe: Increasing Prevalence of Kawasaki Disease

Increasing number of cases of KD in India

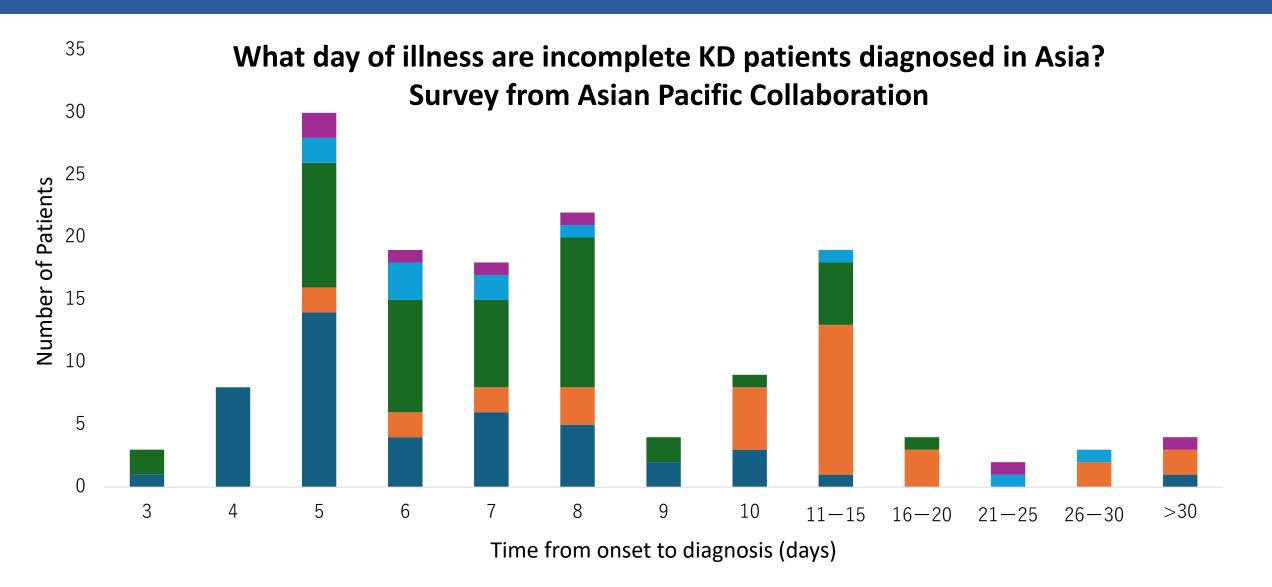

Lucas R, et al. *Journal of Paediatrics and Child Health*. 2022. Presentation by Dr. Davinder Singh-Grewal

3.5% annual increase in KD hospitalization

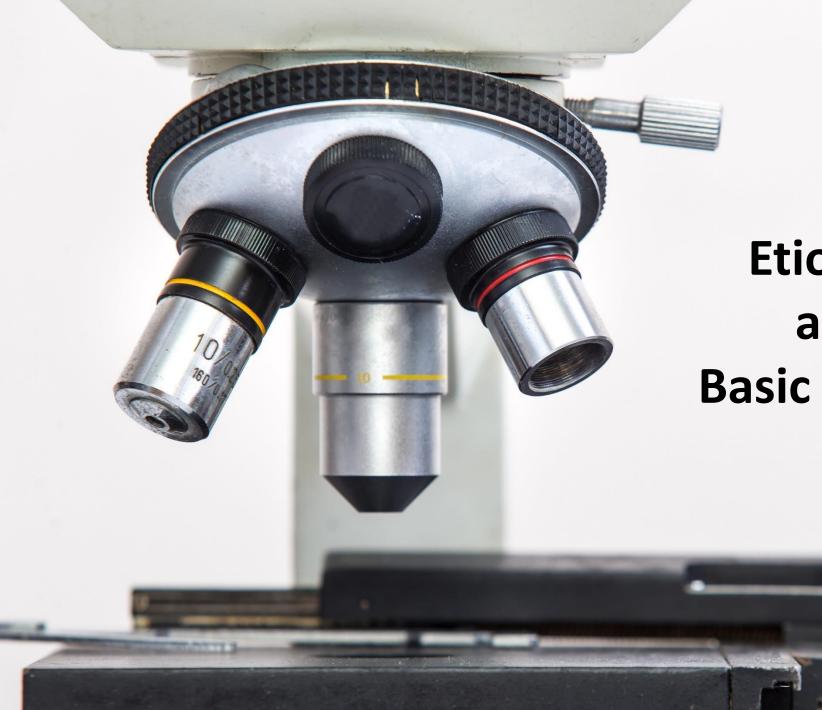
rate over 25 years in Australia

Adapted from presentation by Dr. Surjit Singh

Around the Globe: Access to Appropriate KD Care


Survey Among Latin America Network

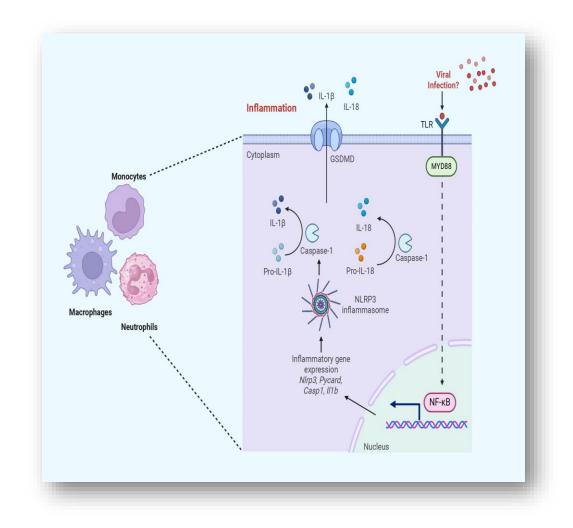
61 responses among 15 countries:


Adequate knowledge of KD in your country? 61% Timely diagnosis/treatment of KD? 43% Cardiology consultation available? 98% Available echo? 95% Available IVIG? 89% Available biologic therapies? 43%

Adapted from presentation by Dr. Marco Antonio Yamazaki-Nakashimada

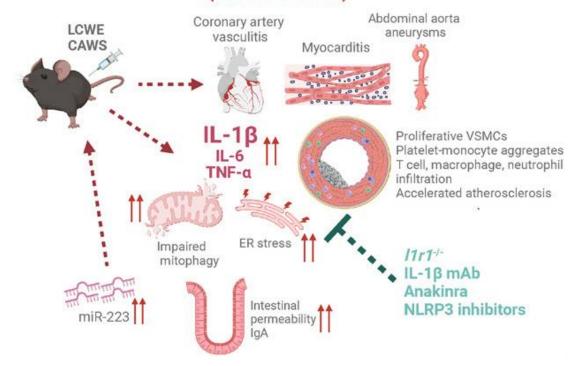
Around the Globe: Importance of Increasing Awareness

Adapted from presentation by Drs. Kazuyuki Ikeda and Hiromichi Hamada


Etiology and Basic Science

Etiology and Basic Science (Animal Studies): Role of IL-1 in Pathogenesis and Treatment

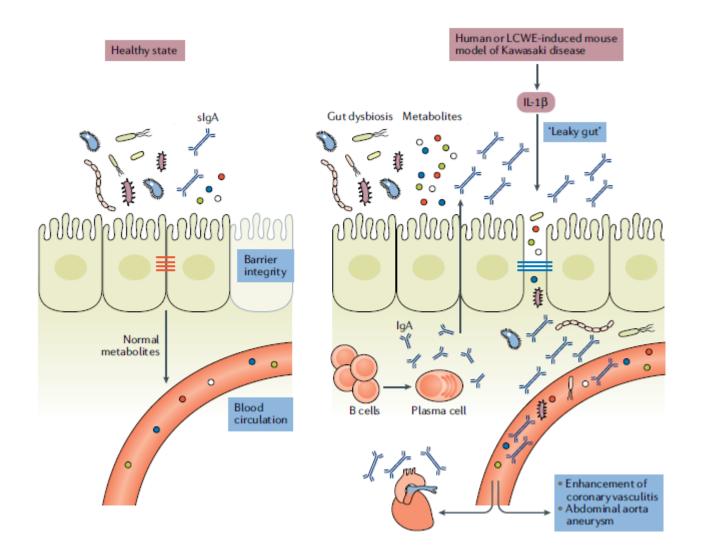
IL-1 β is crucial for host defense against infections.


Uncontrolled and dysregulated production of IL-1β is linked to the development of a broad variety of inflammatory diseases, including KD.

Increased expression of genes related to either IL-1β production or IL-1 signaling components during human KD

Etiology and Basic Science (Animal Studies): Role of IL-1 in Pathogenesis and Treatment

Mouse models of KD (LCWE and CAWS)

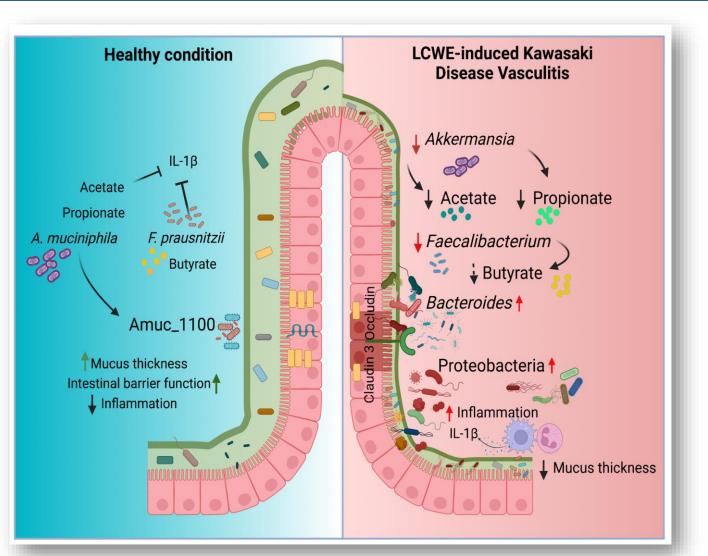

- Evidence suggests that mouse models of KD (LCWE, CAWS) are IL-1β mediated.
- Blocking IL-1β pathway (ex: IVIG, anakinra) reduces development of coronary arteritis.

Etiology and Basic Science (Animal Studies): Role of IL-1 in Pathogenesis and Treatment

Human trials targeting IL-1R				
Clinical trials exploring the inhibition of the IL-1 pathway using the IL-	ANAKID; phase I/II ¹⁸⁰	ClinicalTrials.gov identifier NCT02179853; North America		
1Ra (Anakinra)	Kawakinra; phase II ⁴⁹	ClinicalTrials.gov identifier NCT02390596; Europe		
	ANACOMP; phase III	ClinicalTrials.gov identifier NCT04656184; Europe		
IL-1Ra, interleukin-1 receptor antagonist.				

Atici AE, et al. Canadian Journal of Cardiology. 2024.

Etiology and Basic Science (Animal Studies): Role of the Gut Microbiome


Gut vascular axis in KD??

Evidence of increased intestinal permeability and dysregulated intestinal immune response in LCWE mouse model

Excessive IL-1β release increases intestinal permeability while IVIG decreases permeability

Differences exist in intestinal microbiota composition between KD patients and healthy controls

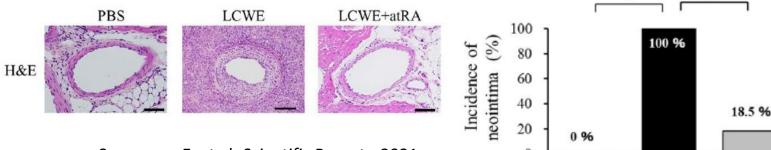
Etiology and Basic Science (Animal Studies): Role of the Gut Microbiome

Gut vascular axis in KD??

The development of CV was associated with alterations in the intestinal microbiota composition.

A decreased abundance of *Akkermansia muciniphila* and *Faecalibacterium prausnitzii*.

Oral supplementation with either of these live or pasteurized individual bacteria, or with short-chain fatty acids 43 (SCFAs) produced by them, attenuated CV inflammation


Rivas MN, et al. *Nature Reviews*. 2020 Jena PK, et al. *bioRxiv* 2024.05.28.596258

Adapted from presentation by Dr. Magali Noval Rivas

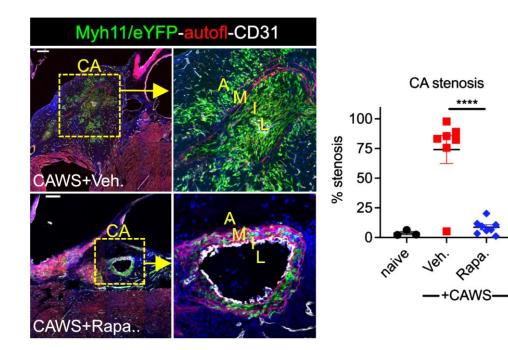
Etiology and Basic Science (Animal Studies): Therapeutic Strategies from Mouse Models

All-trans-retinoic acid (atRA)

- Suppressed CA inflammation
- Reduced incidence of CA stenosis
- Suppressed migration of smooth muscle cells

**

LCWE+atRA


LCWE

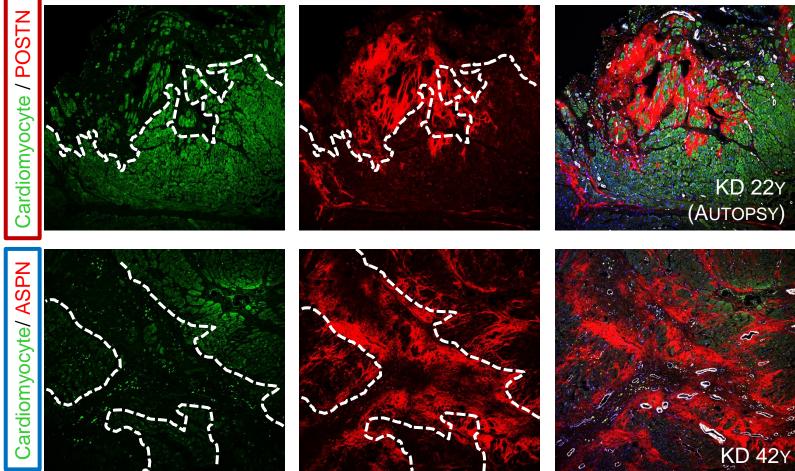
PBS

Suganuma E, et al. Scientific Reports. 2021.

mTOR inhibitor

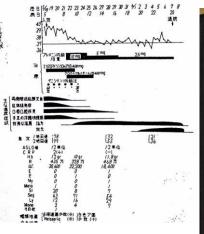
- Pharmacologic mTOR inhibition stops luminal myofibroblast formation and CA stenosis
- mTOR inhibitor (sirolimus) could prevent stenosis in high-risk KD patients with giant CAA

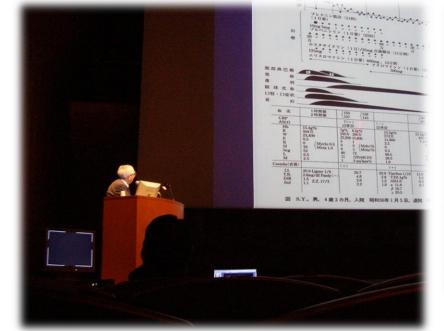
Etiology and Basic Science: Potential Viral Etiology of KD				
	 Sequencing of VH genes from plasmablasts isolated from KD patients revealed Convergent VH3-74 antibody responses in 12/12 patients Antibodies recognize specific peptide sequence likely derived from KD infectious agent The results support one predominant "new" infectious agent as the cause of KD 			
Adapted from presentation by Drs. Anne Rowley ar	nd Susan Baker			


bronchial epithelium; macrophages pick up the

	Patient	MAb	IGHV	PB isotype
	KD1	KD1-2B1	<mark>3-74*01</mark>	IgA
		KD1-1H8	<mark>3-74*01</mark>	IgA
		KD1-2F3	1-18*01	IgM
	KD2	KD2-1D10	<mark>3-74*01</mark>	lgG
	KD3	KD3-1C10	<mark>3-74*01</mark>	IgA
	KD4	KD4-2H4 ^{CE}	<mark>3-74*01</mark>	lgG
	KD5	KD5-2D7	<mark>3-74*01</mark>	IgG
		KD5-2D10	<mark>3-74*01</mark>	IgG
	KD6	KD6-2B2 ^{CE}	<mark>3-33*01</mark>	IgA
		KD6-2H3 ^{CE}	<mark>3-15*01</mark>	IgG
		KD6-2H8	<mark>3-74*01</mark>	IgA
		KD6-1A10 ^{CE}	<mark>3-33*03</mark>	IgA
	KD7	KD7-2H5	<mark>3-74*01</mark>	IgA
		KD7-1B5	<mark>3-33*01</mark>	IgA
		KD7-1E6	<mark>3-23*01</mark>	IgA
		KD7-1D3	<mark>3-23*01</mark>	IgA
		KD7-2A9	5-10-1*03	IgA
	KD8	KD8-1D4 ^{CE}	<mark>3-72*01</mark>	IgA
		KD8-2E9	<mark>3-74*01</mark>	IgG
		KD8-2C10	<mark>3-74*01</mark>	IgA
		KD8-2A9	<mark>3-21*01</mark>	IgM
		KD8-2A5	<mark>3-72*01</mark>	IgM
	KD9	KD9-2F6	<mark>3-73*01</mark>	IgA
		KD9-2B1	<mark>3-21*01</mark>	lgG
		KD9-1E9	1-69*01	IgG
	KD10	KD10-1G3	<mark>3-73*01</mark>	IgA
		KD10-1A8	<mark>3-74*01</mark>	IgG
		KD10-1F7 ^{CE}	1-2*02	IgA
		KD10-2F6	<mark>3-74*01</mark>	IgG
	KD11	KD11-2E4	<mark>3-74*01</mark>	IgA
		KD11-2A12 ^{CE}	<mark>3-21*01</mark>	IgA
	KD12	KD12-2A1 ^{CE}	<mark>3-74*01</mark>	IgA
,		KD12-1F10 ^{CE}	<mark>3-21*01</mark>	IgA
,		KD12-2A10 ^{CE}	<mark>3-15*07</mark>	IgG
		KD12-1G7 ^{CE}	<mark>3-66*01</mark>	IgA
		KD12-1H2 ^{CE}	<mark>3-21*01</mark>	lgA

Etiology and Basic Science: Dynamic Changes in Ventricular Remodeling


Cardiac fibrosis is progressive and dynamic in each KD patient



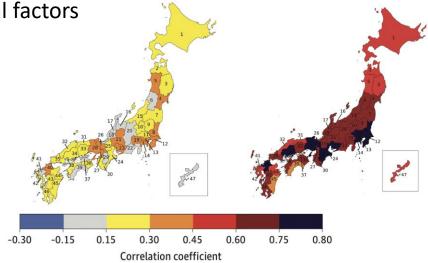
Dr. Kawasaki Memorial Lecture

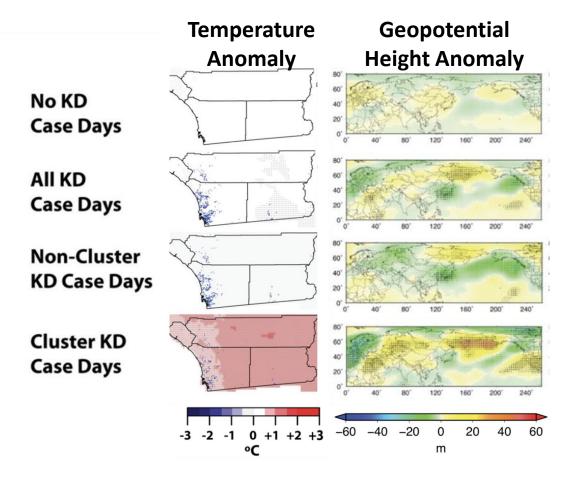
第5例 浅生山秀夫(男)1才2ヵ月入院 昭和37年5月18日 退院昭和37年6月7日

My final take-home message

Global collaboration is needed.

Genetics and Environmental Science

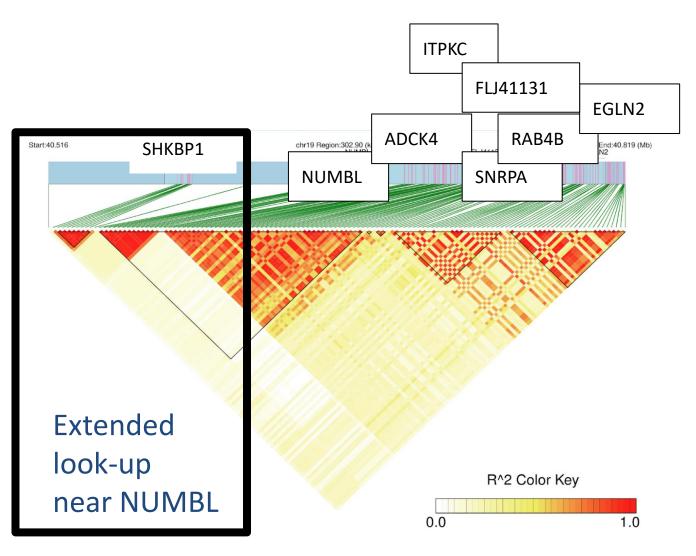

Genetics and Environmental Science: Temporal Clustering and Climatology


>1000 KD cases in San Diego over 15 years

- Temporal clusters of KD cases noted
- Associated with regional air temperature anomalies and large-scale atmospheric circulation patterns

Seasonal pattern across Japan, 1988-2019

- Higher correlations of incidence across regions in older patients compared to infants
- Suggest combination of environmental and social factors



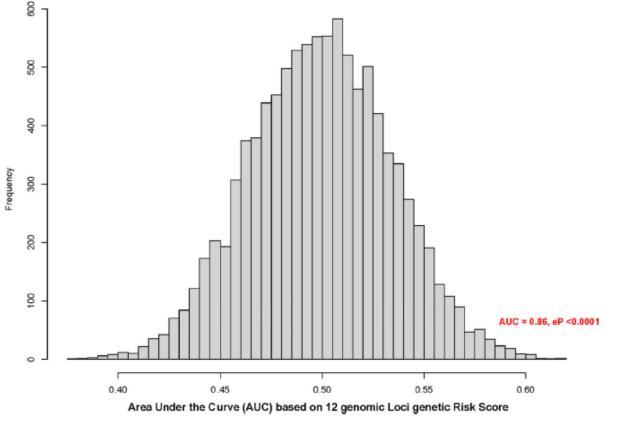
Genetics and Environmental Science: New Frontiers in KD Genetics

GWAS Hispanic

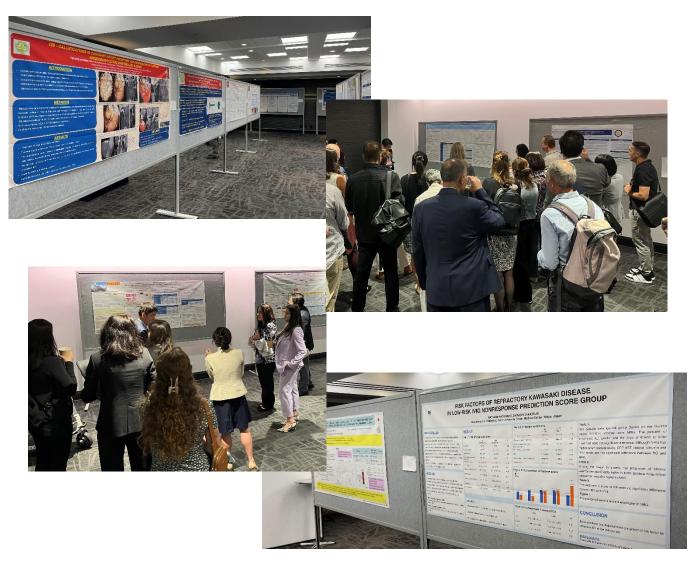
Successfully validated previously discovered variants near ITPKC gene.

Identified novel variants in SHKBP1 gene associated with KD susceptibility.

Genetics and Environmental Science: Genetics and Treatment Resistance


Is there genetic heterogeneity? Is there genetic association with treatment response and outcome?

Whole Genome Sequencing association analysis of 472 patients with KD (234 with CAA, 238 without CAA)


Identification of 12 genomic risk loci mapped to 48 genes for CAA $z \ge 5$

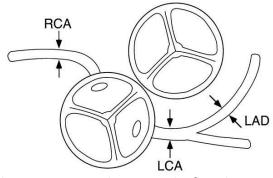
Genetic risk score – AUC 0.86

Goal: identify personalized therapeutic approaches

Poster Presentations

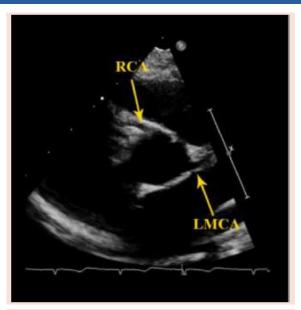
Highlights of Poster Presentations

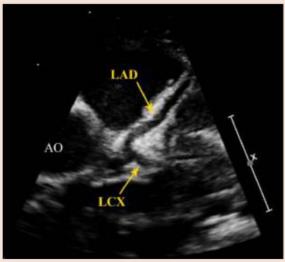
- Importance of patient/family education
- Artificial intelligence models to predict CAA
- Lack of effectiveness of high-dose aspirin
- ARB or ACE inhibitor's role in CAA regression
- Necessity to develop IVIG-resistance prediction scoring system for infant KD
- Importance of early use of adjunctive therapy to reduce CAA in high-risk infants


Acute KD Imaging

Acute KD Imaging: Echocardiography

High sensitivity and specificity for coronary abnormalities Importance of accurate measurements and optimizing settings:


- High frequency probe
- Black/white: lower gain, higher compression
- Color: lower Nyquist color Doppler
- Measurements: inner edge to inner edge


Most common CA involvement: LAD > RCA > LMCA > Cx

de Zorzi A, et al. Journal of Pediatrics. 1998.

Benefits of echocardiography beyond the coronaries with subtle myocardial changes via strain assessments

Adapted from presentations by Drs. Pei-Ni Jone and Lucy Youngmin Eun

Brown LM, et al. JASE. 2015.

Acute KD Imaging: Coronary Artery Z-Score Round Table Discussion

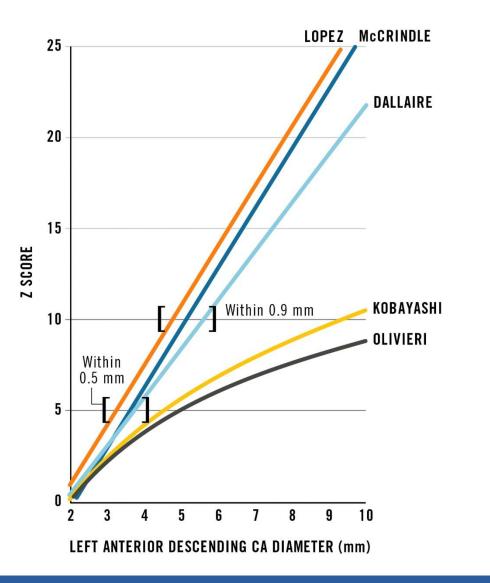
Case Presentation

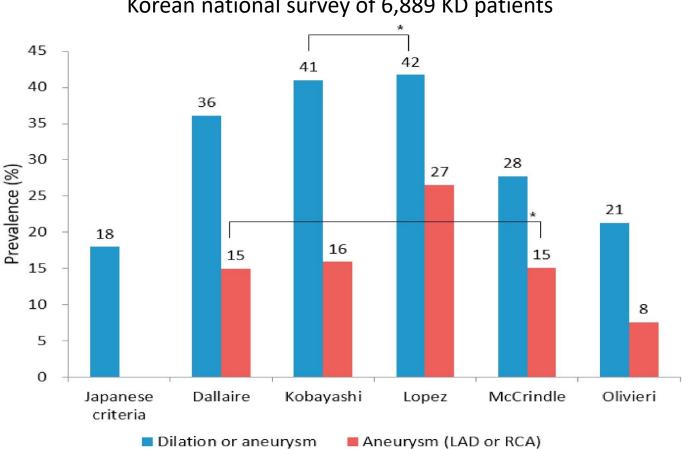
- 3-month-old Caucasian male presenting with:
- Fever x 6 days and clinical features of KD

- Labs: CRP 11.2 mg/dL, ESR 82 mm/hr, platelets 464 thou/µL

	LMCA	LAD	RCA	
Diameter (mm)	2.7	2	2	
Canada	3.62	2.74	2.14	Z-Score Measurements:
Japan	3.85	2.51	2.44	 Normal: <2 Dilation (ectasia) only: 2 to <2.5
PHN, USA	2.55	4	1.71	Small aneurysm: 2.5 to <5
Boston, USA	2.35	2.47	1.91	 Medium aneurysm: 5 to <10 and <8 m Large/giant aneurysm: ≥10 or ≥8 mm
Taiwan	3.12	1.77	1.96	
Korea	2.67	2.14	2.03	
Italy	2.55	3.1	2.6	

Acute KD Imaging: Coronary Artery Z-Score Round Table Discussion


Case Presentation


- 3-month-old Caucasian male presenting with:
- Fever x 6 days and clinical features of KD

- Labs: CRP 11.2 mg/dL, ESR 82 mm/hr, platelets 464 thou/µL

	LMCA	LAD	RCA	
Diameter (mm)	2.7	2	2	
Canada	3.62	2.74	2.14	Z-Score Measurements:
Japan	3.85	2.51	2.44	 Normal: <2 Dilation (ectasia) only: 2 to <2.5
PHN, USA	2.55	4	1.71	Small aneurysm: 2.5 to <5
Boston, USA	2.35	2.47	1.91	 Medium aneurysm: 5 to <10 and <8 mm Large/giant aneurysm: ≥10 or ≥8 mm
Taiwan	3.12	1.77	1.96	
Korea	2.67	2.14	2.03	
Italy	2.55	3.1	2.6	

Acute KD Imaging: Variability of Z-scores

Korean national survey of 6,889 KD patients

Dallaire F, et al. JASE. 2021.

Acute KD Imaging: Z-Scores

Larger CAA are associated with higher risk of major adverse events, primarily z-score \geq 10.

There are different methods of calculating z-scores, reflecting different normative values in diverse patient populations and various methodologies.

Z-scores calculations should not be used interchangeably. Consistency is important.

MACE-Free Survival

Elias MD, et al. Journal of Pediatrics. 2024.

Thank you and enjoy the conference!

14th International Kawasaki Disease Symposium (IKDS) August 26th – 29th, 2024 | Montreal, Canada | Hotel Bonaventure

ikds.org

Take Home Messages – Day 214th International Kawasaki Disease Symposium

August 28, 2024

Dr. Federica Anselmi Paediatric Rheumatology University hospital of Bicetre- Paris Faculty of Medicine of Paris-Saclay University

Dr. Fujito Numano Fujito Numano, MD, PhD Lecturer of Pediatrics Niigata University Graduate school of Medical and Dental Sciences

Conflict-of-Interest Disclosures

Presenters:	Federica Anselmi Fujito Numano
Any direct financial payments including receipt of honoraria	None
Membership on advisory boards or speakers' bureaus	None
Funded grants or clinical trials	None
All other investments or relationships that could be seen by a reasonable, well-informed participant as having the potential to influence the content of the educational activity	None

Day 2 Agenda

Young Investigator Oral abstract competition

Bioinformatics and AI

Breakouts

Cardiac imaging CAA follow-up

Re-examining use of ASA and approaches to anticoagulation

Cardiovascular Immunology

Highlights

New insights into KD pathogenesis

KD (early) diagnostic tools

KD is a heterogeneous disease (clusters)

Preventing the CV complications

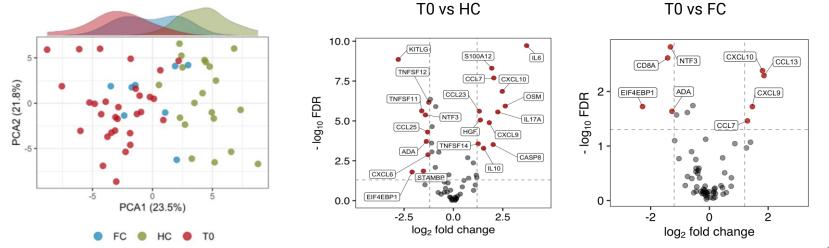
CV imaging and treatment

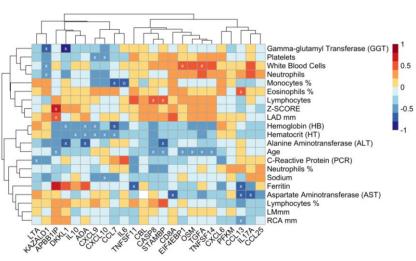
Highlights

New insights into KD pathogenesis

KD (early) diagnostic tools

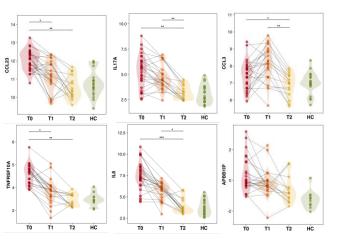
KD is a heterogeneous disease (clusters)


Preventing the CV complications


CV imaging and treatment

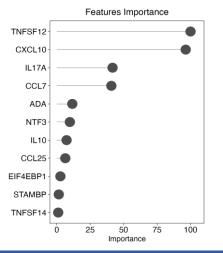
Multi-modal immune dynamics of pre-COVID-19 Kawasaki Disease following Intravenous Immunoglobulin

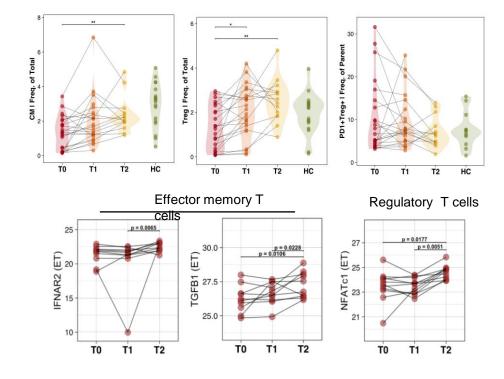
• Respect febrile controls, inflammation profile in KD is characterized by Th-1 chemokines (CXCL9, CXCL10, CCL7, CCL13)



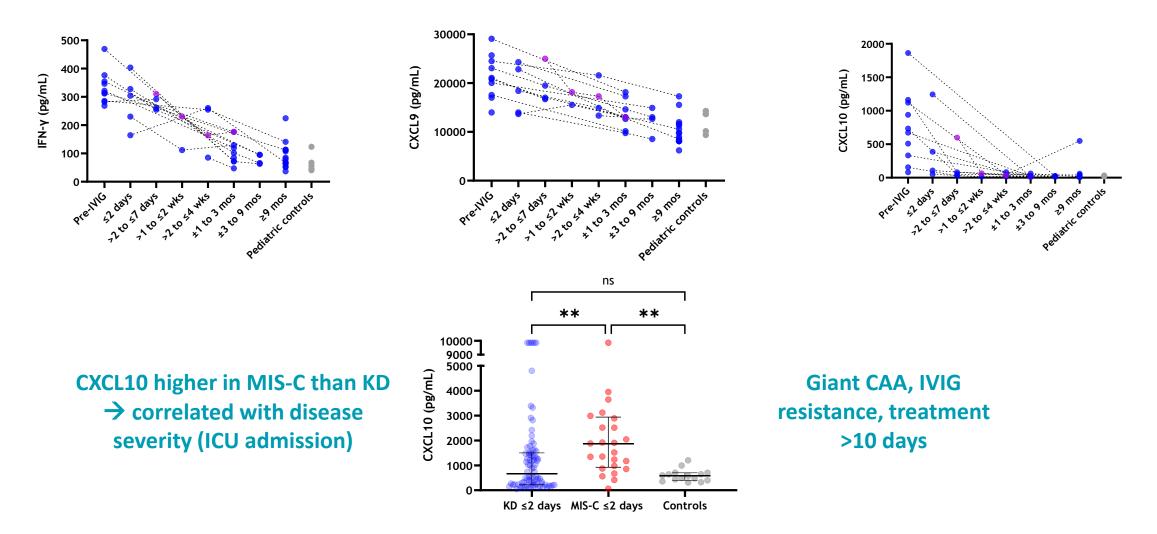
• APBB1IP correlated with higher echocardiogram values and linked to

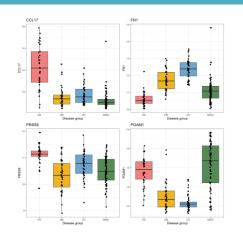
coronary artery involvement.

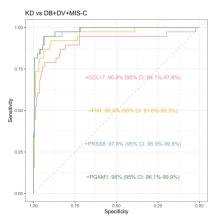

Giulio Olivieri


Multi-modal immune dynamics of pre-COVID-19 Kawasaki Disease following Intravenous Immunoglobulin

-IVIG modify the levels of proteins (IL-6, IL-17A, L-17C, CXCL11, CXCL10, CXCL9, CCL23, TNF, VEGF9) and modulates Treg cells and their gene expression profile.


-ML approach identified key proteins that distinguish KD thus offering insights into KD pathogenesis as well as valuable information on prognostic indicators.


Giulio Olivieri


Immunological Biomarkers in KD

Striking difference between KD and MIS-C is the <u>hallmark V β 21.3 expansion seen in MIS-C and not in KD</u>

A Host Protein Signature to Distinguish KD from Other Infectious and Inflammatory Diseases

KD vs DV

98.4% (CI:

96.6% - 100%)

KD vs DB

98.8% (CI:

97.1 - 100%

KD vs MIS-C

94.8 - 100%)

97.4% (CI:

4 proteins can distinguish KD from other pediatric infectious and inflammatory syndromes

Protein	Model	Role in KD
Fibronectin (FN1)	DB+DV+MIS -C (M1); DB+DV (M1)	pathogenesis of coronary artery lesions in KD
C-C Motif Chemokine 17 (CCL17)	DB+DV+MIS -C (M1)	susceptibility and formation of coronary artery aneurysm in KD
Phosphoglycera te Mutase 1 (PGAM1)	DB+DV+MIS -C (M1)	Promotes cardiac fibrosis by affecting cardiac-hypertrophy associated proteins
C-C Motif Chemokine 22 (CCL22)	DB+DV+MIS -C (M3); DB+DV (M1)	Activated in acute KD stimulating cell recruitment; Increased concentration in serum

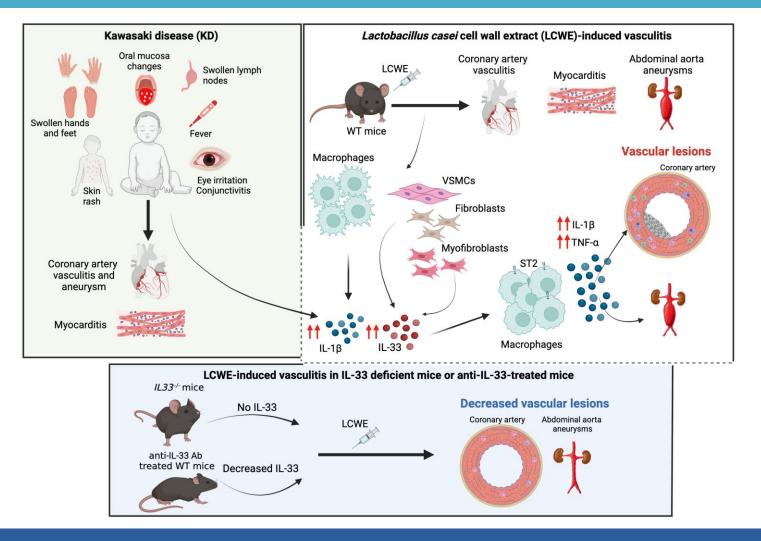
translation to point-of-care diagnostic test feasible

Adapted from Sophya Yeoh

 KD vs DB
 KD vs DV

 100% (95% CI: 100
 100% (95% CI: 100% - 100%)

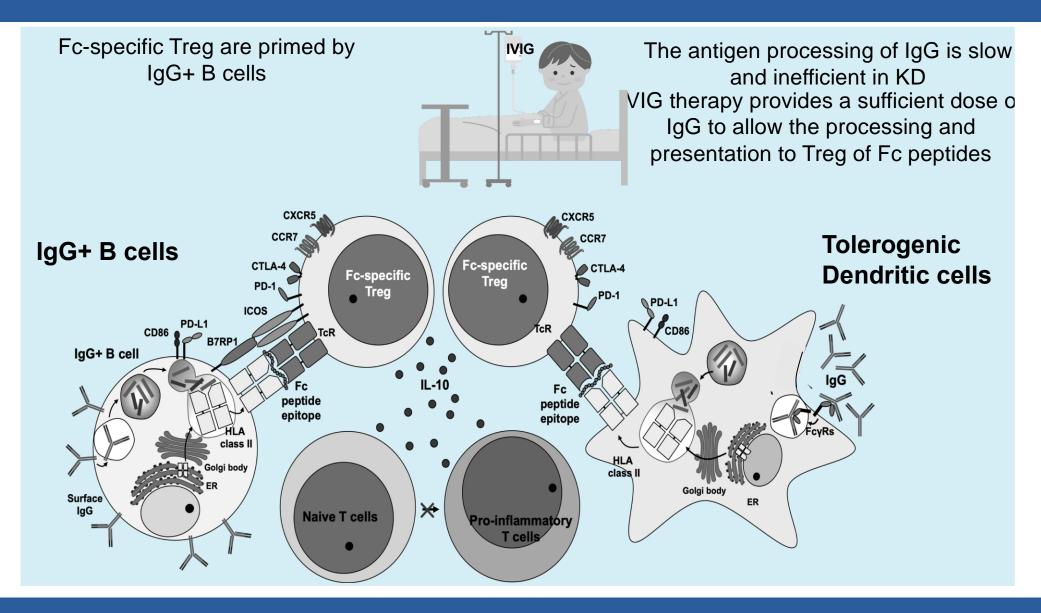
NOL 2: 87 3% (95% CI: 80 2%-94 3%


+CCL22: 99.4% (95% CI: 98.6%-100%

HL2RG: 100% (95% CI: 100%-100%)

0.50 Specificity 0.25

KD vs DB+DV


IL-33 promotes cardiovascular lesion development by boosting IL-1β production in a murine model of KD

Thacyana Teixeira de Carvalho

Role of regulatory T-cells in pathogenesis and therapeutics of KD

Highlights

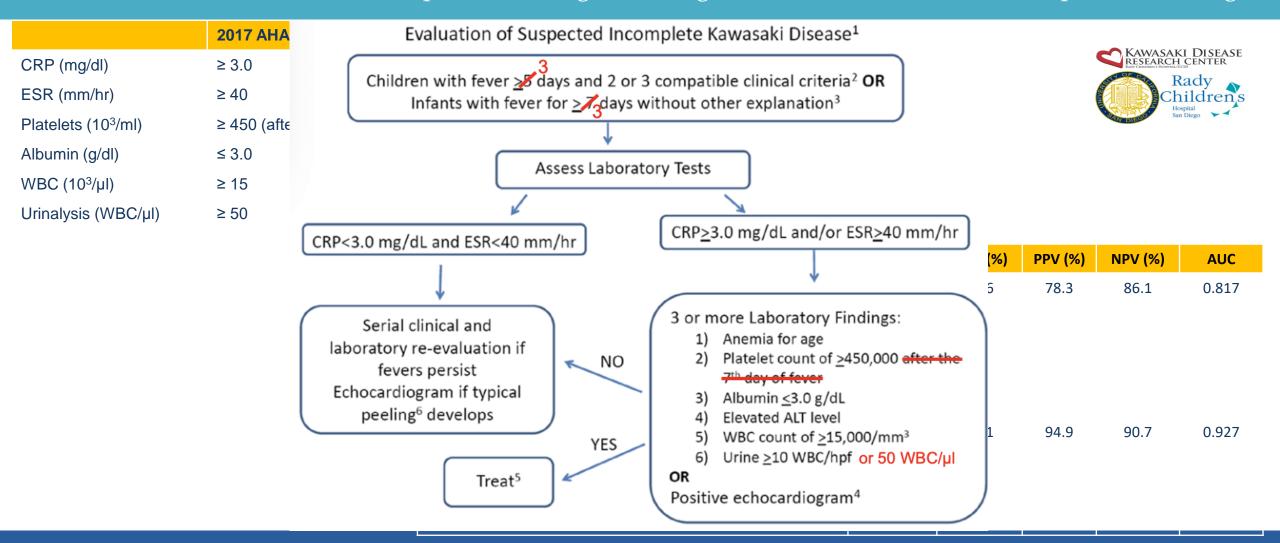
New insights into KD pathogenesis

KD (early) diagnostic tools

KD is a heterogeneous disease (clusters)

Preventing the CV complications

CV imaging and treatment


Evaluation of the 2017 AHA Incomplete KD Diagnostic Algorithm and a Data-driven Proposal of Changes

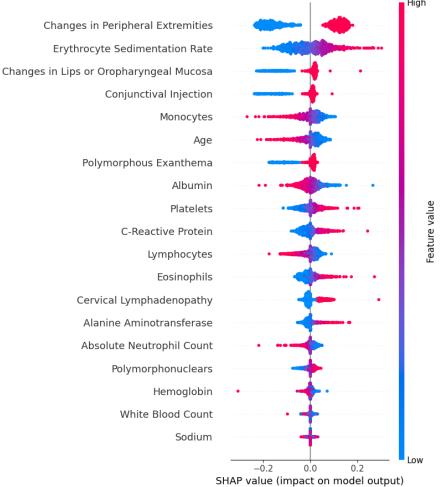
	2017 AHA	Proposed cutoffs
CRP (mg/dl)	≥ 3.0	≥ <u>5.0</u>
ESR (mm/hr)	≥ 40	≥ <u>15</u>
Platelets (10 ³ /ml)	≥ 450 (after day 7)	≥ <u>400</u> (any day)
Albumin (g/dl)	≤ 3.0	≤ <u>3.2</u>
WBC (10 ³ /µl)	≥ 15	≥ <u>25</u>
Urinalysis (WBC/µI)	≥ 50	≥ <u>50</u>

				Sens (%)	Spec (%)	PPV (%)	NPV (%)	AUC
AHA 2017 algorithm		KD	FC	87.8	75.6	78.3	86.1	0.817
-	Positive	36	10					
	Negative	5	31					
Proposed		KD	FC	90.2	95.1	94.9	90.7	0.927
cut-offs	Positive	37	2					
	Negative	4	39					

Evaluation of the 2017 AHA Incomplete KD Diagnostic Algorithm and a Data-driven Proposal of Changes

Hao Wang

Jonathan Lam


Bioinformatic and AI: Diagnostic and Management tools

Kawasaki MATCH: A Clinical Decision Support Tool for KD

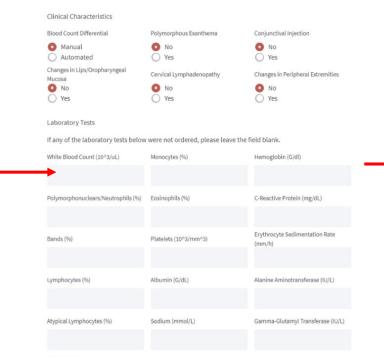
Most important features of the model correlate with wellcharacterized KD clinical variables

- Increase in the prevalence of clinical signs
- High ESR
- Low monocyte %
- Younger age

Bioinformatic and AI: Diagnostic and Management tools

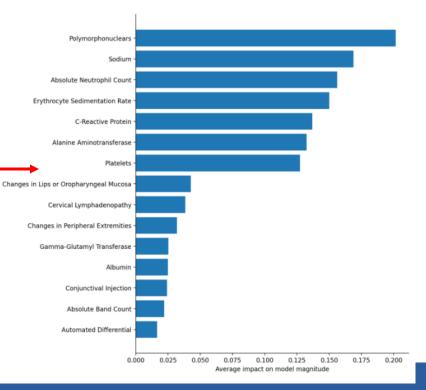
Kawasaki MATCH: A Clinical Decision Support Tool for KD

Date of Birth (MM/DD/YYYY

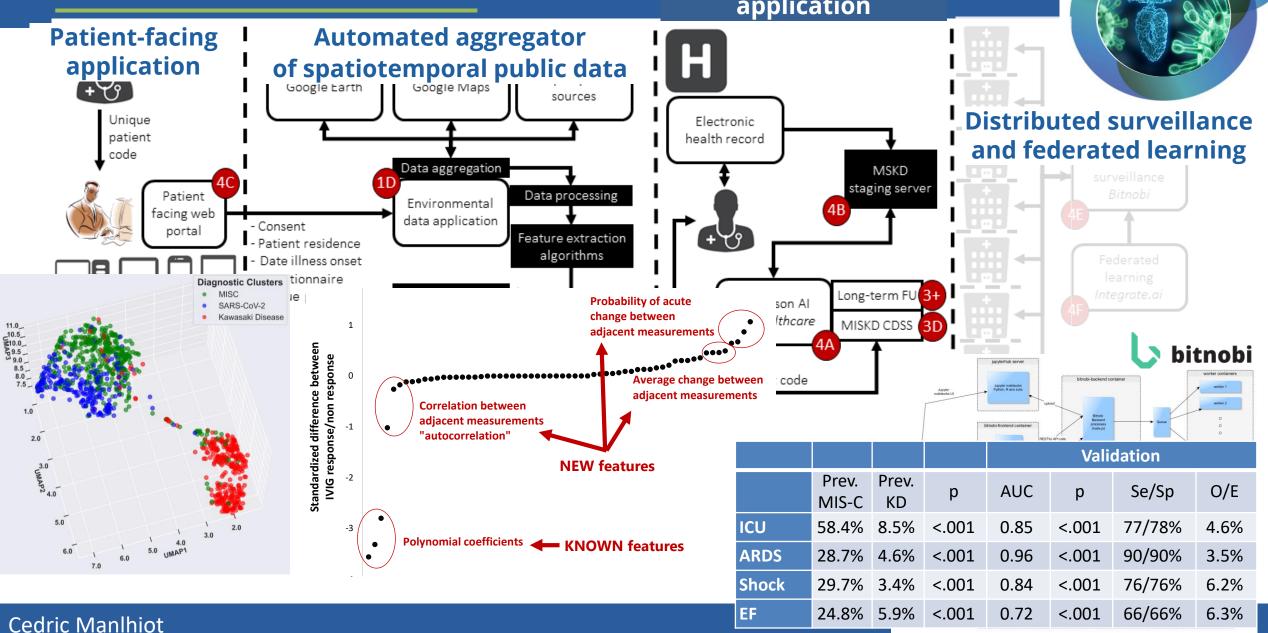

Predict

Most important features of the model calculator are not intended to be used as a decision-making tool and/or as a replacement for professional expertise and/or judgment.

- Increase in the prevalence of clin
- High ESR
- Low monocyte %
- Younger age



This calculator is intended to be used for pediatric patients where multisystem inflammatory syndrome


Features that are more important to the model risk score of 99.95% have a higher impact.

Jonathan Lam

Deployment ecosystem

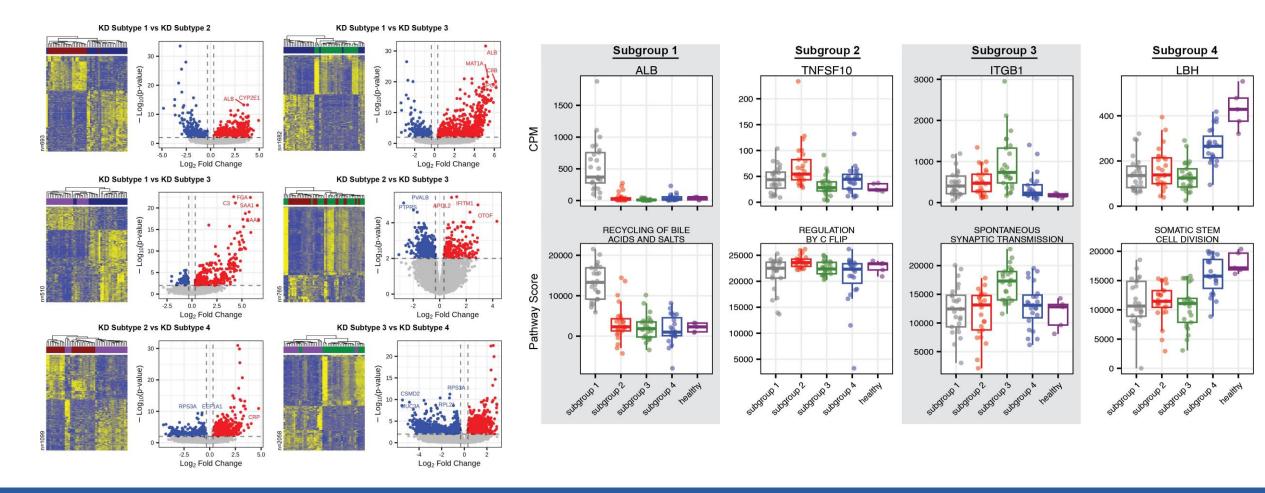
MISKD application

Highlights

New insights into KD pathogenesis

KD (early) diagnostic tools

KD is a heterogeneous disease (clusters)



Preventing the CV complications

CV imaging and treatment

Cell-Free RNA Signatures of Kawasaki Disease Subgroups

Conor J. Loy

Data-driven approaches

A) Mild KD	B) IFN-mediated KD	C) Hyperinflammatory KD				= 671 (34%)	KD-like, n =		
Female bias	Youngest	Most KD features	Least KD features Oldest, BMI †	Characteristic	Severe MIS-	Mild MIS-C	Classic KD	Severe KD	р
↓ Inflammatory markers	† IFNγ, IFN Score	↑ IL-6, IL-10, IL-18, NT-proBNP, CRP, Cells	Cytopenias		C n = 39 (2%)	n = 632 (32%)	n = 574 (29%)	n = 700 (36%)	
				Age at presentation (yrs)	7.7	4.9	2.8	4.4	< 0.001
No PICU admission No complications	No PICU admission	1 MAS, Arthritis	PICU admission ↑ Shock	Southeast Asian (%)	9%	9%	5%	4%	0.02
				Respiratory Symptoms (%)	28%	39%	30%	31%	0.02
17%	20%	42%	56%	Abdominal pain (%)	92%	39%	31%	19%	<0.001
				Shock (%)	16%	2%	2%	1%	<0.001
				ICU Admission (%)	22%	4%	1%	2%	<0.001
				Mean LVEF (%)	54%	58%	62%	62%	<0.001

Patient clusters can be uniquely described by composite signatures based on distinct biological profiles specific disease trajectories and patient outcomes A proportion of patients diagnosed with KD prior to the COVID-19 pandemic had a clinical profile consistent with subgroups of pandemicera MIS-C patients.

Pre-pandemic KD patients with a phenotype MIS-C like had a substantially higher prevalence of shock and LV dysfunction.

Highlights

New insights into KD pathogenesis

KD (early) diagnostic tools

KD is a heterogeneous disease (clusters)

Preventing the CV complications

CV imaging and treatment

Predicting coronary artery abnormalities development using coronary Z-score and clinical parameters before the treatment for KD

Risk factors for the development of CAA differed from those of IVIG resistance, except for younger patient age.

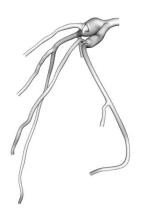
Pre-Zmax ≥ 1.6	(2points)	<caa development=""></caa>			<1 st IVIG resis	tance>	
Albumin ≤ 3.1 g/dL	(1point)		Odd Ratio	[95% CI]		Odd Ratio	[95% CI]
Months of $\Delta a < 12$	(1point)	Pre-Zmax	2.443	[1.859-3.246]	Male sex	1.444	[1.027-2.030]
	(ipoint)	Albumin (g/dL)	0.502	[0.265-0.957]	Neutrophil (%)	1.058	[1.039-1.078]
		Age (months)	0.979	[0.963-0.993]	Platelet (×10 ⁴ /µL)	0.970	[0.952-0.990]
2 points : high-risk	for CAA.				T-bil (mg/dL)	1.545	[1.211-1.971] [0.962-0.982]
	Albumin $\leq 3.1 \text{ g/dL}$ Months of Age ≤ 12	Albumin $\leq 3.1 \text{ g/dL}$ (1point)	Pre-Zmax \geq 1.6(2points)Albumin \leq 3.1 g/dL(1point)Months of Age \leq 12(1point)Pre-Zmax Albumin (g/dL) Age (months)	Pre-Zmax ≥ 1.6 (2points)Albumin $\leq 3.1 \text{ g/dL}$ (1point)Odd RatioMonths of Age ≤ 12 (1point)Pre-Zmax2.443Albumin (g/dL)0.502Age (months)0.979	Pre-Zmax ≥ 1.6 (2points)Albumin $\leq 3.1 \text{ g/dL}$ (1point)Months of Age ≤ 12 (1point)Pre-Zmax2.443Albumin (g/dL)0.5020.9790.963-0.993]	Pre-Zmax ≥ 1.6 (2points)Albumin $\leq 3.1 \text{ g/dL}$ (1point)Months of Age ≤ 12 (1point) $Male sex$ $Male sex$ $Albumin (g/dL)$ 0.502 0.502 $[0.265-0.957]$ $Meutrophil (%)$ $Age (months)$ 0.979 $[0.963-0.993]$ $Platelet (\times 10^4/\mu L)$	Pre- $\angle max \ge 1.6$ (2points)Albumin ≤ 3.1 g/dL(1point)Months of Age ≤ 12 (1point)Pre- $\angle max$ 2.443Albumin (g/dL)0.502Albumin (g/dL)0.502Age (months)0.979Defines : high-risk for CAA.T-bit (mg/dL)

A higher baseline Z-score was reported to be associated with the development of CAA from various countries> The ideal cutoff value for Zmax may be < 2.0.</p>

In addition to patients at high risk of IVIG resistance, those at high risk of developing CAA should also be considered for initial intensive therapy.

Diagnostic Value of 99mTc-MIBI Myocardial Perfusion Imaging in Detecting Myocardial Ischemia of Children with Kawasaki Disease and Coronary Artery Lesions

Diagnostic value of the MPI in detecting myocardial ischemia compared to other tests


Test	Sensitivity	Specificity	Accuracy	PPV	NPV	Карра
MDI	79.2%	69.0%	71.8%	48.7%	89.9%	0.402
MPI	(38/48)	(89/129)	(127/177)	(38/78)	(89/99)	0.403
CLUDI	67.7%*	89.7%	83.5%*	71.9%	87.6%	0.502
CMRI	(23/34)	(78/87)	(101/121)	(23/32)	(78/89)	0.583
	25.0%*	96.9%	77.4%	75.0%	77.6%**	-
Echocardiogram	(12/48)	(12/129)	(137/177)	(12/16)	(125/160)	0.277
	52.1%	85.9%	76.8%	58.1%	82.7%	
CEEs	(25/48)	(110/128)	(136/177)	(25/43)	(111/134)	0.394

99mTc-MIBI MPI is safe, with an optimal diagnostic sensitivity among noninvasive examinations (CMRI, echo, CEE)

Yiting Gui

Hemodynamic analysis and risk assessment of coronary artery aneurysms and thrombosis in KD

 Hemodynamic parameters derived from CFD revealed superior predictive performance on thrombus than current standard metrics based on diameters of CAAs.

- Machine Learning approaches **for realtime prediction of hemodynamics** quantities
- They require data amounts that are **difficult to gather for rare pathologies** such as CAAs
- Data-driven methods available for **generating large populations of plausible CAAs** for training ML models
- The method is validated by medical experts and will allow for **real-time thrombosis risk estimation**

Highlights

New insights into KD pathogenesis

KD (early) diagnostic tools

KD is a heterogeneous disease (clusters)

Preventing the CV complications

CV imaging

I speak in Japanese. Please put on your headset.

THE YUKI LYNN MEMORIAL LECTURE: Establishing WHO Center and Training

Yuki Lynn Takahashi Memorial Lecture: Establishing WHO Centre and training

Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, PGIMER, Chandigarh

Dr. Surjit Singh MD; DCH (Lon.); FRCP (Lon.); FRCPCH (Lon.); FAMS

Head, Department of Pediatrics and Chief, Allergy Immunology Unit,

Advanced Pediatrics Centre, PGIMER, Chandigarh, India

WHO Collaborating Centre for Education, Research and Training in Pediatric Immunology Asia Pacific League of Associations for Rheumatology Centre for Excellence in Rheumatology Indian Council of Medical Research Collaborating Centre of Excellence in Pediatric Immunology

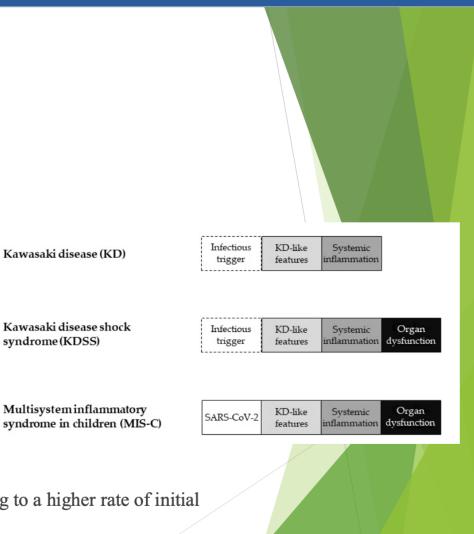
BREAKOUT SESSIONS: From Emerging Clinician to Expert

KD shock syndrome (acute management)

Α

В

С


Definition of KDSS

- Sustained systolic hypotension
- Clinical signs of poor perfusion
- Initiate volume expansion or infusion of vasoactive agents or Transfer to an intensive care setting

KDSS incidence

- \blacktriangleright 2.8% to 5.3%. in the United States.
- ▶ Five out of 84 (6 %) in Italy
- ▶ 5% in Mexico.
- ▶ In Japan (1.1%, 6/552)
- In Korea 0.8% (9/1095)
- ▶ 9 patients (1.9%) in Taiwan

Consequently, KDSS is relatively uncommon in Taiwan, leading to a higher rate of initial misdiagnosis and delays in appropriate therapy for KDSS.

Adapted from presentation by Dr. Kun-Lang Wu

Refractory KD

Differential diagnosis for Kawasaki disease

<Diseases causing coronary artery aneurysms>

Inflammatory diseases	diseases Kawasaki disease, Takayasu arteritis, polyarteritis nodosa, giant cell arteritis, IgA vasculitis, eosinophilic polyangiitis granulomatosis, systemic lupus erythematosus, systemic juvenile idiopathic arthritis, Behçet's disease, PFAPA syndrome, Erdheim-Chester disease, IgG4-related disease, ADA2 deficiency, chronic granulomatosis								
Infections	Yersinia infection, COVID-19 associated pediatric multi-organ inflammatory syndrome (MIS-C), Infectious mononucleosis (IM), chronic active EB virus infection (CAEBV), Mycoplasma infections, rickettsia infections								
Syndromes	Marfan synd.、Noonan synd.、Williams synd.、 Ehles-Danlos synd.、Loeys-Dietz synd. etc.								
Others Iatrogenic disease, atherosclerosis, congenital coronary arterial fistula Asi K, et al. Pediatr Rheumatol Online J. 2019; 17:3. van Doorn HR, et al. Pediatr Cardiol. 2006;27:515-518. Tang R, et al. Med Hypotheses. 2006; 67: 371-4. Kang Z, et al. Front Pediatr. 2022; 9: 7 Cascio A, et al. New Microbiol. 2011; 34: 421-424. van Doorn HR, et al. Pediatr Cardiol. 2006;27: 515-518. Tang R, et al. Med Hypotheses. 2006; 67: 371-4. Kang Z, et al. Front Pediatr. 2022; 9: 7									

<Incidence of coronary artery aneurysms>

KD	MIS-C	Juvenile–onset SLE	Systematic JIA	Takayasu arteritis	Polyarteritis nodosa	CAEBV
< 25% (untreated)	14-48%	4.45%	< 16%	55.6% (pediatric)	< 1%	8.9%
Sharma C, et al. Rheumatol. 20	21; 17: 731-748.	Lei C, et al. Can J Cardiol. 2020; Gori T. Biomedicines. 2		. 2017;14:76–79. Felix A, et al. Pediatr Rhe	eumatol Online J. 2022;20: 98. Kasap Cuceoglu	Ozen S, et al. J Pediatr. 2004; 145: 517-522. M, et al. Semin Arthritis Rheum. 2021; 51: 559-564. TL, et al. Pediatr Rheumatol Online J. 2012; 10: 1.

In this case, the diagnostic criteria for Kawasaki disease were met. But it was atypical and intractable. Therefore, vasculitis syndrome and JIA were differentiated.

Adapted from presentation by Dr. Kenichiro Yamamura

Differential diagnosis: Is it really KD? (Rash)

Differential Diagnosis

- Viral illnesses (eg adenovirus, enterovirus)
- Scarlet Fever
- Measles
- Toxic Shock Syndrome
- Stevens-Johnson Syndrome
- Staphylococcal Scalded Skin Syndrome
- Rheumatic Fever

- Malaria
- Typhoid
- Rocky Mountain Spotted Fever or other rickettsial infections
- Leptospirosis
- Systemic Juvenile Arthritis
- Drug Reactions
- Mercury Poisoning

Exercise as a daily healthy routine in KD patients

FITT Principle

When giving exercise guidance, the 4 factors, including exercise frequency, intensity, time, & type should be fully considered based on medical history, physical examination, & necessary auxiliary examinations, & should be dealt with from dynamic exercise & static exercise

- Frequency
- Intensity
- Time
- Type

Exercise as a daily healthy routine in KD patients

JCS/JSCS Recommendations for School Activity Level Mild, Moderate, & Intense Exercise

[Revised in 2 Name	11]	M/F Birth		School Life Management Table (for Elementary School Children) (years) School	leade Class	Date													
1. Diagnosis (ladings)			2. Level of management Management required: A, B, C, D, E No management required requires treatment at home or in hospital, B -Goes to school but must avoid exercise, G	Scheel sport club activity 4, Next visit Name of club (Name of institution: Name of physician: (seal) se]													
Sec	t activity	Intensity of exercise		Mild exercise (C, D, E - allowed)	Moderate exercise (D, E - allowed)	Intense exercise (E - allowed)													
	Basic exercise*	Warming-up exercise Exercise-play to improve athletic ability Warming-up exercise Exercise to improve athletic ability Warming-up exercise		Balance exercise-play (play consists of different body postares such as hying down, siming up down, and standing up) Balance exercise (exercise consists of different body postares such as hying down, siming up/down, standing up, and hopping)	Exercise-play using apparatus (grabbing, releasing, rotating, rolling or going darough the apparatus) Exercise using apparatus (grabbing, holding, rotating, and releasing the apparatus, and exercise using a rope) Exercise to improve techniques (Ditythinic exercise and exercise using a ball,	Exercise-play to change location (orawling, running, jumping, and hopping) Strength competition (pash or pall the partner, or compete strength), combination of basic movements Full-body activities within a given time/course (doort-repe jumping, long-rope	[Revised Name			M/F	Birth date	School Life I (years)		ide Class		_	-	Date	
		Strength-training exercise	Grade 5-6	Exercise to improve flexibility (including stretching), light walking	hoop or clubs)	jumping, long-distance running)	1. Diagno	osis (findings)	i)				2. Level of management	3. School sport	club activity	4. Next visit	Name of instituti		
	Athletics		Grade 3-4	Walking in different ways, rubber rope jumping	Hopscotch	Full-strength foot race, straight-course relay race, relay race with low obstacles Full-strength foot race, round-course relay race, low hardle race, high-long jump with shart running start.							Management required: A, B, C, D, E No management required	Name of club (Allowed (Note:) - Prohibited	years months later or when symptoms develop	Name of physicia	n:	(scal)
		Athletics	Grade 5-6	Walking and light standing broad jump	Slow jogging, light jumping (standing long/high jump)	Full-strength sprint, hurdle race, high jump with running start, long jump with running start	[Le	evel of manage	gement: A - Requires	s treatment at hom	e or in hospital, B - C	oes to school but r	sust avoid exercise, C - Can do mild exercise, D -	Can do moderat	e exercise, E - Can do inte	ense exercise]			
i 1		Games, ball games, tag (for early grades), games using goals or nets,	Grade 1-2	Target shooting with ball throwing, bouncing and catching	Target shoeting with ball kicking and holding, ball kicking, tag, encampment annes	raning start	Sport ac	ectivity		Intensi	ty of exercise	1	Mild exercise (C, D, E - allowed)		Moderate exercise ()	D, E - allowed)		Intense exercise (E - allower	d)
	Ball sports	baseball-type games (for middle grades)	Grade 3-4 Grade 5-6	Basic ball handling (passing, catching, kicking, dribbling, shooting, and batting)	Simple games (games with basic exercises with modified rules to fit the place and apparatus used)	Competition-style exercise		Basic exer	ercise	Warming-up exc Strength-trainin		students	hythmic movement to communicate with other (throwing, hitting, catching, kicking, jumping)	Exercise to imp endurance	prove flexibility, techniqu	es, high-force movement, and	Exercise with ma	ximum endurance, speed, and r	muscle strength
1			_	Exercise-play using climbing frames	Exercise-play using menkey bars and wall bars	Exercise-play using mat, horizontal bars and vfaulting horse		Apparatus	us gymnastics	(Mat, vaulting b and balance bear	orse, horizontal bar, n)		mat exercise, balance exercise, light jumping		tice of low-grade technique, running to perform actions such as ing, jumping, and rotation		Performance, competition, combination of actions		es
s Jo ad c				Basic exercises Mat exercise (basic movements such as forward roll, backward roll, handstand against	Basic techniques Mat exercise (e.g., forward/backward rolls, forward/backward rolls with legs			Athletics		(racing, jumping	, throwing)	Basic motion, standing broad jump, light throwing, light jumping (must avoid running)		³ Jogging, short run and jump			Long-distance running, sprint race, competition, time race		time race
r i	Apparatus granastics	Apparatus gymnastics using mats, vaulting horse or horizontal bars		wall, and bridging) Vaulting horse (basic movements such as jumping with legs apart) Horizontal bars (basic movements such as forward roll landing)	apart, handstand against wall, and handstand with support) Vaulting horse (e.g., jumping with legs apart with short running start, jumping with less folded, and forward roll on the horse)	ing Combination of gymnastic movements		Swimming	ng	(freestyle, breast butterfly)	stroke, backstroke,	Easy movement in water, float, prone float, kick and float, etc.		Slow swimming			Competition, swimming marathon, time race, start and turn		art and turn
					Horizontal bars (e.g., back hip circle with support, forward roll landing with a leg over the bar, front hip circle, and back hip circle) Floating and diving (e.g., prone float with hands against the wall, and paper-					C	Basketball Handball	-	Basic movements (e.g., passing, shooting,						
		Play with water	Grade 1-2	Play with water (foot race, playing train in swimming pool)	rock-scissers or staring game in water)	Relay race in the pool, bubbling, and bobbing				Goal games	Soccer]	dribbling, feining, lifting, trapping, throwing, kicking, and handling)						
1	Swimming	Floating and swittening	Grade 3-4	Floating (e.g., prone float, back float, jelly fish float) Swimming movements (flatter kicks, frog kicks)	Floating (e.g., kick and float) Swimming (e.g., repeated bobbing, etc.)	Crawl stroke and breaststroke with supportive apparatus	sport			<u> </u>	Rugby Volleyball	-		Training with		ple games using basic movements (adjust games	Time race, applied		
		Swimming	Geade 5-6			Crawl stroke and breaststroke	jo edć	Ball sports	rts	Net games	ping-pong	Slow exercise without running	Basic movements (e.g., passing, servicing,	footwork (with no close	practice collaborative playing, and offensive/detensive	practice, simplified	Competition		
	Dance		Grade 1-2 F Grade 3-4	Pretend play (e.g. birds, bugs, dinosaurs, and azimals)	Pretend play (e.g., airplane, fun-park rides)	Rhythmic play (e.g., bouncing, whirling, twisting, and skipping) Combination of variable movements (rock and samba dance)	F			games	Tennis Badminton		receiving, tossing, feinting, stroking, and shots)	body contact)	componens)	sens)	game, game, competition		
1		Expression movement	Geade 5-6	Improvised expression movement	Light rhythmic dance, folk dance, simple Japanese folk dance	Japanese folk dance with stremaous movements				Baseball-type games	Softball Baseball		Basic movements (e.g., pitching, catching, and batting)	1					
	hatdoor activities kating, and water	such as play in the snow or on the ice, skiir front activities	ч. з	Playing on snow or ice	Waking with ski plates or skates and waterfront activities	Skiing and skating				golf		1	Basic movements (light swinging)	1	Practicing at golf range		1		
		Cultural activities	¢	Cultural activities without prolonged activities requiring physical strength	Most cultural activities not described in the right column	Playing instruments requiring physical exertion (such as trumpet, trombone, oboe, bassoon, horn), playing or conducting quick rhythmical music, playing in a marching band		Martial ar	arts	Judo, kendo, su		Etiquette, basic m	ovement (c.g., ukemi, swinging, sabaki)	Practicing simp	sle techniques and forms	with modest basic movements	Applied practice,	competition	
	Failure the above intensity of exercise during allotic faviori, design allotic movings. Taking weather comparison, and marries tests.					Dance Outdoor a	activity	Original dance, 1 modern dance Play in the snow skiing, skating, o climbing, swimn	or on the ice, amping,	Basic movement	e.g., hand gesture, steps, expressions)			kiing/skating, hiking on flatlands,	Dance recitals Climbing, swimn wind surfing, etc.	ing marathon, diving, canocing	g, boating, surfing,		
Remarks	teneds						Cultural a	water-front activ		Cultural activities	not requiring long-term physical activity		etivities not described in	the right column	Playing instrume trumpet, trombor	ts requiring physical exertion e, eboe, bassoon, hom), playin rhythmical music, playing in a	ng or		
	ntermediate ex ntense exercise		se respirat	tory rate without causing shortness of breath. Players may talk with part	ners, if any, during exercise.			Cultural act	ctivities not requirin	g long-term physic	al activity	· Students other th	e intensity of exercise during athletic festival, duri an those in Category "E" should consult with the side schools, and training camp				will participate in	ther special school activities s	uch as class trips,
							Remarks												

nitions Mild exercise: Physician activities that do not increase respiratory rate in average children at the same age

Intermediate exercise: Physical activities that increase respiratory rate without causing shortness of breath. Players may talk with Intense exercise: Physical activities that increase respiratory rate and cause shortness of breath.

lasie exercise: including resistance (isometric) exercise

Fukazawa R, Kobayashi J, et al; Japanese Circulation Society Joint Working Group. JCS/JSCS 2020 Guideline on Diagnosis and Management of Cardiovascular Sequelae in Kawasaki Disease. Circ J. 2020 Jul 22;84(8):1348-1407.

Adapted from presentation by Dr. Roni Jacobsen

Chronic life-long phase: What anticoagulant & antiplatelet

Special Considerations

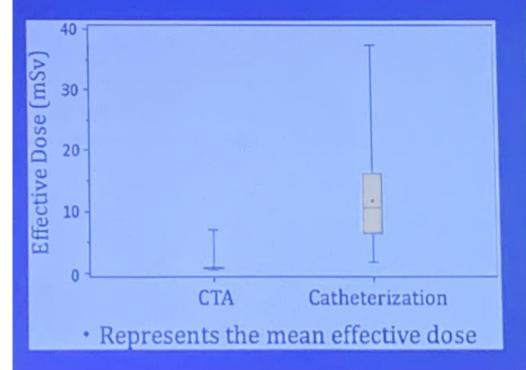
- Warfarin is known to interact with several drugs and certain foods, and it often presents with problematic dosing and maintenance in young children
- Previous studies of warfarin therapy in children with KD and in those who underwent Fontan surgery showed that time in the therapeutic range for warfarin was only 45%-60%, leaving a substantial amount of time with inadequate anticoagulation

Adapted from presentation by Dr. Seda Selamet Tierney

Chronic life-long phase: What anticoagulant & antiplatelet

Special Considerations

- LMWH has more predictable pharmacokinetics, rapid achievement of a therapeutic level of anticoagulation, and minimal monitoring
- Patients on LMWH require twice-daily subcutaneous injections, which may affect their quality of life
- Long-term therapy with LMWH has been associated with possible decreased bone mineral density and increased risk of fracture in adults, although this effect is not well characterized for pediatric patients



CARDIAC IMAGING CAA FOLLOW-UP

B

CT coronary imaging in KD

How does CT compare to catheter angiography?

Stanley Manne Children's Research Institute

Mi Northwestern Modicine' Ferberg Ednel of Medicine

Natural background radiation	3 mSw/yr
Aldune passenger (cross country)	0.04 mSv
Chest X-ray (single view)	up to 0.01 m6v
Chest X-ray (2 view)	
Head CT	up to 2 mSv
Chest CT	up to 3 mbv
Abdominal CT	ug to 5 mSv

The radiation used in X-rays and ET scans has been compared to background radiation we are exposed to duily. The also is midleading as this refers to whole body dose which is not truly comparable to studies that image any a portion of the body. However, this comparison may be height in understanding relative radiation doses to the pacent.

Background	L day
Chest X-ray (single)	1 day
Head CT	up to 8 months
Abdomenal CT	up to 20 months

Watson et al. 2013 Ped Card

Children's Hospital of Chicago

Adapted from presentation by Dr. Simon Lee

Imaging surveillance of coronary arteries

Summary of imaging data for KD coronary assessment

Affiliations + expand PMID: 35986822 DOI: 10.1007/s11886-022-01768-4

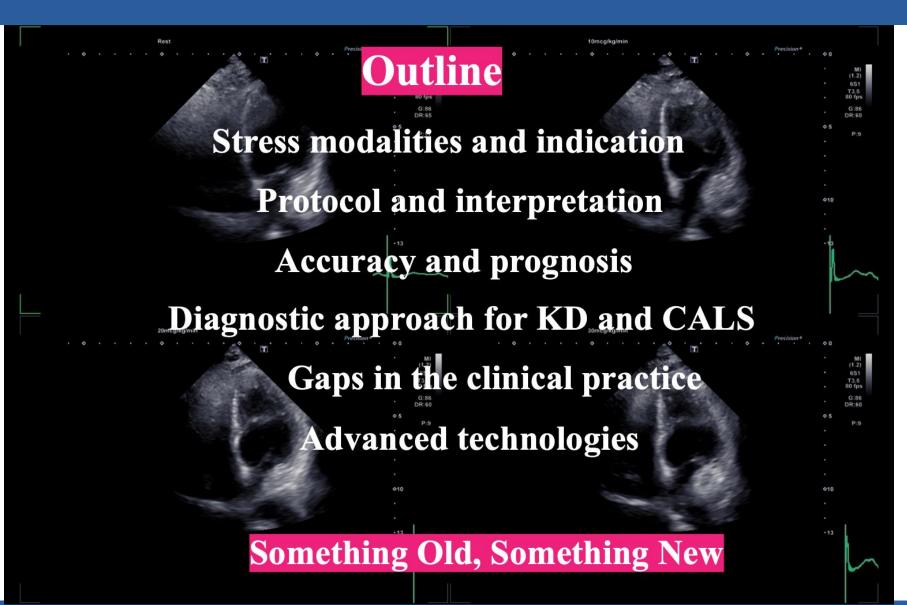
- In the first two years assessment more likely for symptomatic ischemia
- > two years, most imaging for risk assessment (except medium- giant aneurysms)
- If there was never coronary involvement no findings on imaging (up to 20 years)
- If there are regressed aneurysm or small aneurysm vessel wall changes may occur (calcium, abnormal vasoreactivity) but risk of MACE is low
- Large aneurysms do not regress and the long-term chance of intervention/MACE is high
- Echo is not sufficient for stenosis or distal vessel evaluation, may miss aneurysms in distal or circumflex coronary artery
- CMR is age/HR dependent, best for perfusion/tissue characterization but does not see calcium and distal vessels (3T, contrast angiography may change this)
- CCT has low radiation dose in the current era is good for vessel pathology including coronary calcium in all ages and heart rates

MRA imaging – perfusion defect (optional 4D flow in KD) Pros & Cons

The debate continues

- While the technique offers unique advantages, these practical constraints often influence its adoption and utilization in clinical practice
- > More robust evidence is needed to establish its clinical utility and to guide its integration into routine clinical practice
- > Its use is likely to evolve as more evidence accumulates and technology improves
- > To address validation gaps, will take time and collaborative efforts to accumulate the necessary evidence

Until then, the use of MRI perfusion imaging in Kawasaki disease remains somewhat controversial and should be decided on a case-by-case basis


Stakes are too high for any delayed or misinterpretation of myocardial ischemia in pediatric patients so until all these limitations are addressed,

MRI Perfusion imaging is not yet ready for Prime time...

Adapted from presentation by Dr. Supriya Jain

Utility of stress echo in KD patients : Dobutamine stress echo

Adapted from presentation by Dr. Nobutaka Noto

Utility of stress echo in KD patients: Exercise stress echo

"Exercise is More Physiologic"

- Dobutamine creates increased oxygen demand of myocardium
- May be used in those under 7 vrs, who cannot use exercise equipment
- Noto et al. evaluated 50 KD patients compared to angiography demonstrated 19/21 patients, > 50% occlusion of coronaries had positive response to dobutamine stress echocardiography (Noto et al. JACC 1996)
- Noto et al. more recently demonstrated that dobutamine stress echo had prognostic value predicting MACE in 15-year follow-up

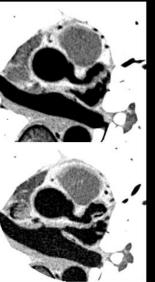
Clinical Research

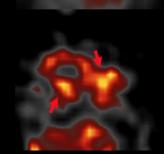
Long-Term Prognostic Impact of Dobutamine Stress Echocardiography in Patients With Kawasaki Disease and Coronary Artery Lesions: A 15-Year Follow-Up Study

Nobutaka Noto MD, PhD, A 🖾 , <u>Hiroshi Kamiyama MD, PhD,</u> Kensuke Karasawa MD, PhD, <u>Mamoru Ayusawa MD, PhD,</u> Naokata Sumitomo MD, PhD, <u>Tomoo Okada MD, PhD,</u> Shori Takahashi MD, PhD

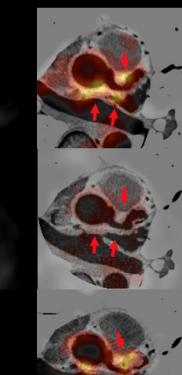
PET nuclear scans of coronary arteries

Change in fusion images of C-CT & FDG-PET


PET/CT


Coronray CT Before

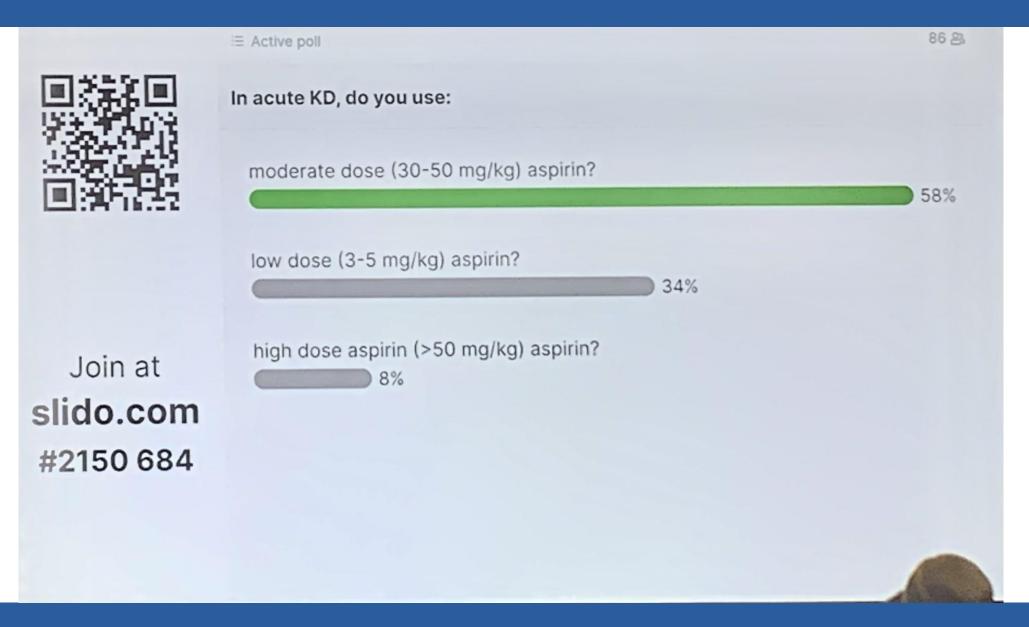
Statin Tx


During Statin Tx

> w/o Satin Tx

FDG-PET

#7: 75% #11: 50% #13: 75%


#7: 100% #11: 50% #13: 90%

Bekki, , Suda, et al. J Nucl Cardiolo 2019;26:671-3

Adapted from presentation by Dr. Kenji Suda

RE-EXAMINING USE OF ASPIRIN AND APPROACHES TO ANTICOAGULATION

Initial intravenous immunoglobulin therapy without aspirin for acute KD

Initial intravenous immunoglobulin therapy without aspirin for acute KD

CAL occurrence within 1 month

	Regression analysis		Propensity score analysis			
			Matching		IPTW	
	Risk ratio (95% CI)	P-value	Risk ratio (95% CI)	P-value	Risk ratio (95% CI)	P-value
MD	(reference)		(reference)		(reference)	
non-MD	1.12 (0.83-1.51)	0.46	1.44 (0.62–3.38)	0.40	1.19 (0.90–1.56)	0.23

The point estimate of the Risk Ratio for the non-MD group exceeded 1, but the result was not statistically significant.

Limitations:

- •It is difficult to verify non-inferiority in observational studies.
- •The non-MD group includes cases where ASA was administrated with the initial IVIG,
- so it is unclear whether only cases without concerns for coronary arteries were extracted.

Initial intravenous immunoglobulin therapy without aspirin for acute KD

		70 용
	Is it reasonable, in select cases of acute KD, NOT to use ASA?	
回新服	No	77%
	Yes 13%	
Join at slido.com #2150 684	Unsure 10%	

DOACs for prophylaxis and thrombolysis – Benefits for KD patients

Advantages of DOACs

- Oral formulations (once, twice or 3 times daily)
- Predictable effect
 - Wide therapeutic and safety margin
 - Reduces the need for routine monitoring
- Fixed dosing:
 - Weight based dosing regimen with established pediatric PK and PD
 - Role of DOAC level in dose titration still under evaluation
- Fewer drug-drug interactions

Adapted from presentation by Dr. Leonardo Brandao

DOACs for prophylaxis and thrombolysis–Challenges for KD patients

DOAC-associated Bleeding

- Activated charcoal within 6 h
- Non-specific reversal agent*
 - Prothrombin complex concentrates (4F-PCC):

prefer inactivated > activated PCC (25 to 50 IU/kg, IV; typical initial dose up to 2,000 IU)

Hemodialysis

- Dabigatran (with renal impairment)

*Low to very low quality in systematic review

Burnet AE, et al. J Thromb Thrombolysis 2016;41(1):206-32 Schulman S. Semin Thromb Hemost 2017;43(8):886-92

Thank you for your attention and enjoy the conference!

Take Home Messages – Day 3 14th International Kawasaki Disease Symposium

August 29, 2024

Rakesh Kumar Pilania MD, DM Post Graduate Institute of Medical Education and Research, Chandigarh, India

Alan Wang MD

Ann & Robert H. Lurie Children's Hospital of Chicago, USA

Conflict-of-Interest Disclosures

Presenters:	
Any direct financial payments including receipt of honoraria	None
Membership on advisory boards or speakers' bureaus	None
Funded grants or clinical trials	None
All other investments or relationships that could be seen by a reasonable, well-informed participant as having the potential to influence the content of the educational activity	None

Day 3 Summary

IVIG and Novel Therapies

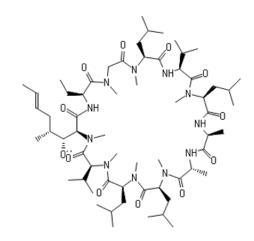
Impact of Missed or Delayed Diagnosis

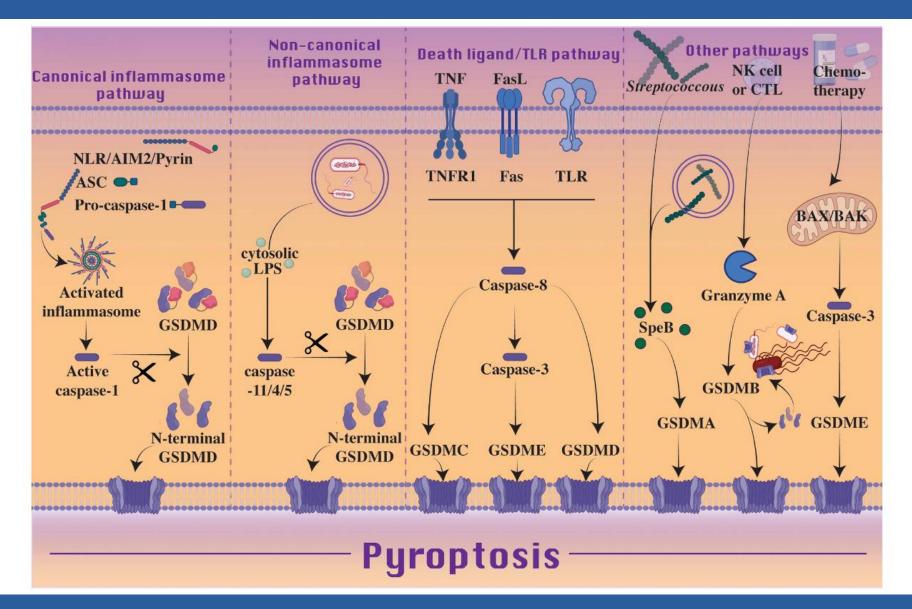
Richard Rowe Memorial Lecture

Acute Coronary Syndrome in KD

Transition of Care and Canvas for the Future

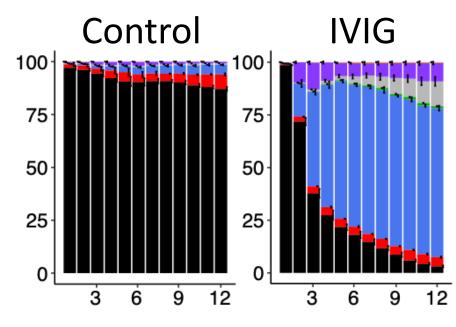
Solving Worldwide Gaps in KD Care

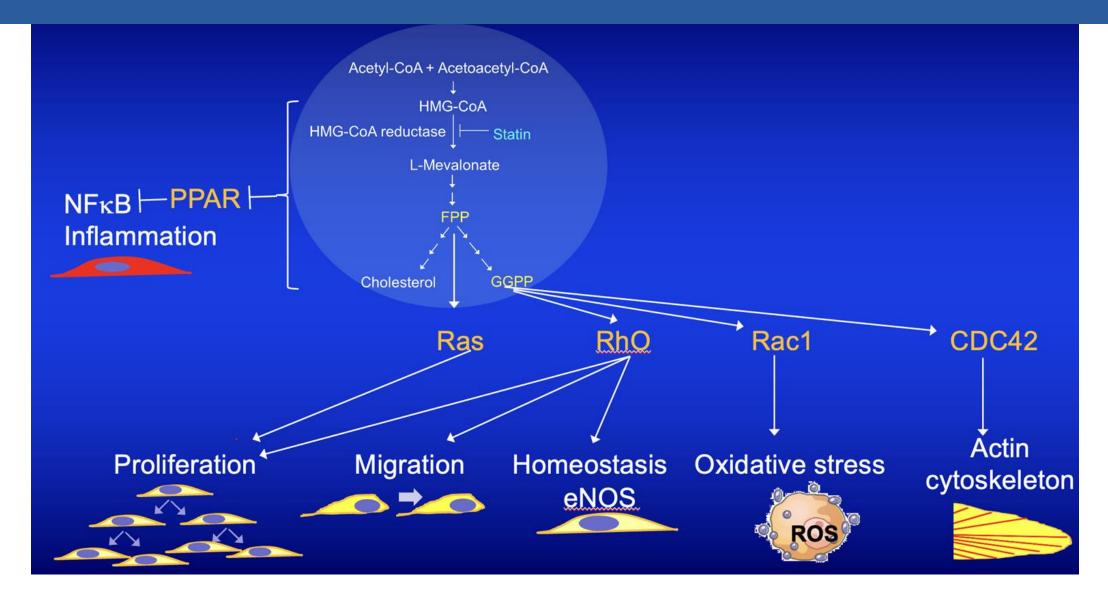

IVIG and Novel Therapies



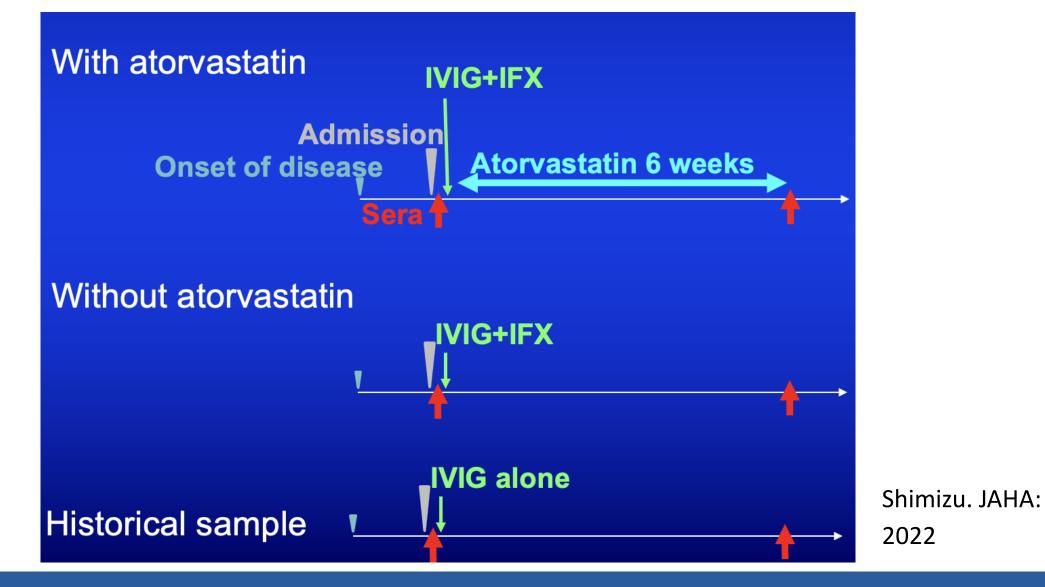
Too Long, Didn't Watch

<u>Statins</u>	<u>Steroids</u>	<u>Anakinra</u>	<u>Infliximab</u>	<u>Cyclosporine</u>
Helpful	Helpful	Helpful	Helpful	Helpful

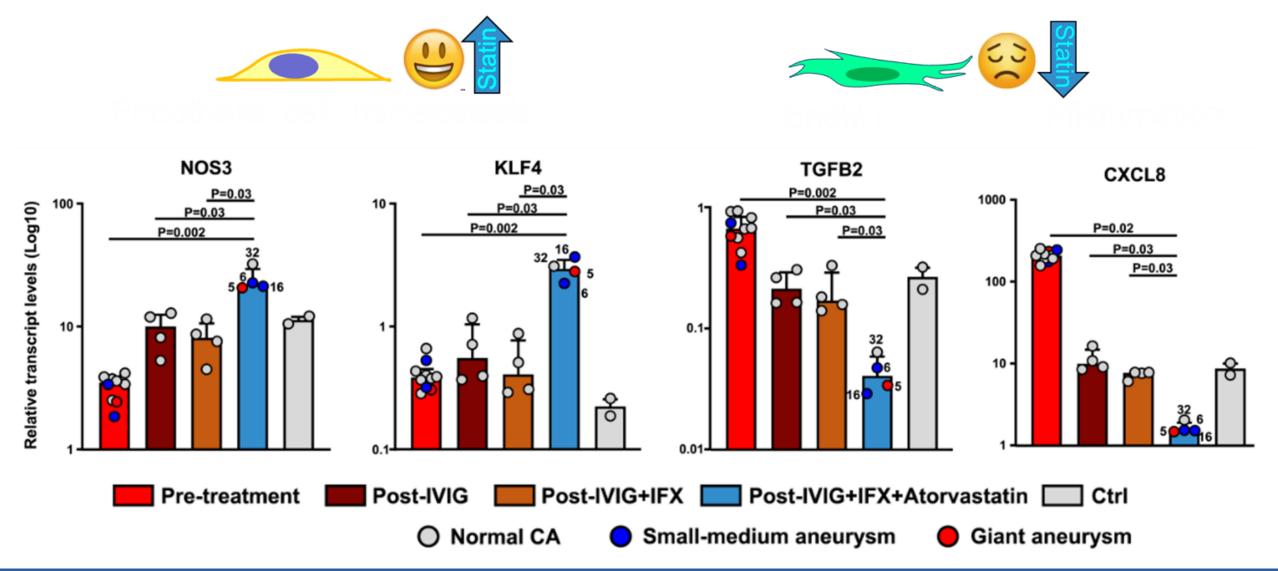

IVIG and Mechanism of Action


Adapted from presentation by Dr. Ben Croker

IVIG and Mechanism of Action

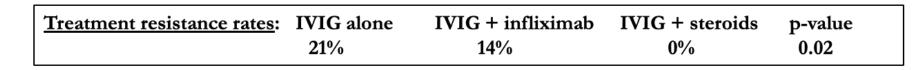

- <u>Steady state</u>: apoptotic neutrophils are cleared (10¹¹/day)
- <u>Disease</u>: apoptotic neutrophils are not cleared, and proceed to extrude nuclear DNA, histones, citrullinated proteins, proteases, and form cytoplasts
 - \circ Anti-microbial event
 - o Amplifier of innate and adaptive immunity
 - $\,\circ\,$ Source of autoantigen

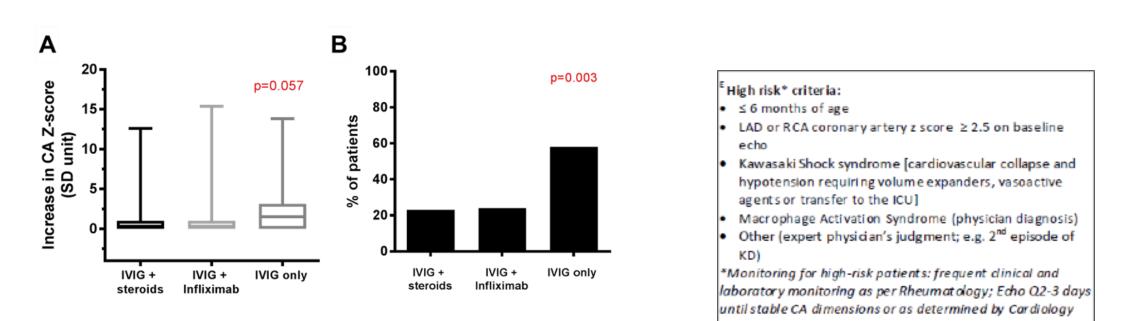
Statins and Endothelial Health



Statins and Endothelial Health

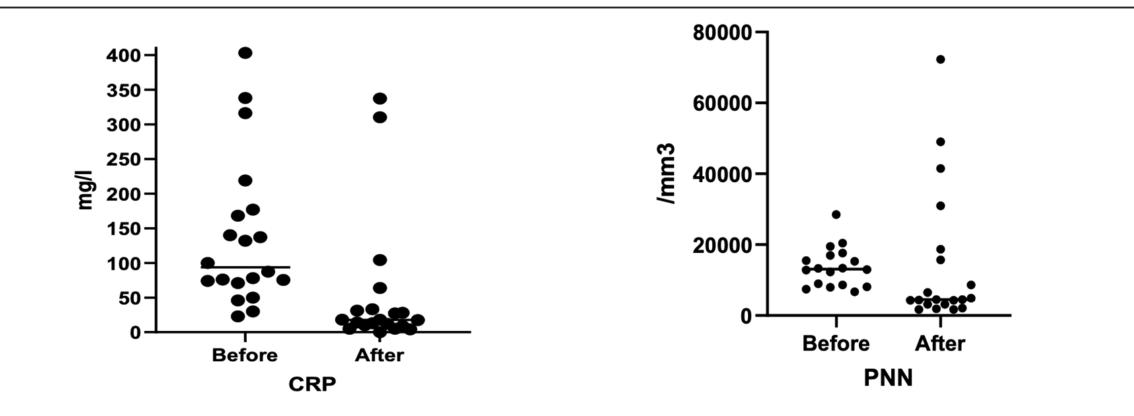
Adapted from presentation by Dr. Chisato Shimizu


Statins and Endothelial Health



Adapted from presentation by Dr. Chisato Shimizu

Adjunctive Treatment with Steroids


Retrospective study in patients with CA z-score > 2.5 at diagnosis comparing 3 centers: IVIG alone vs. IVIG + steroids vs. IVIG +infliximab

Use of Anakinra in Kawasaki Disease

Biologic data before and after anakinra: 24 patients.

Value the day of anakinra is started and the day it is stopped: 19 patients with concomittant CT)

Adapted from presentation by Dr. Isabelle Koné-Paut

Infliximab for Intensification of Primary Therapy

2004

2014

Standard treatment: IVIG 2 g/kg IV and aspirin

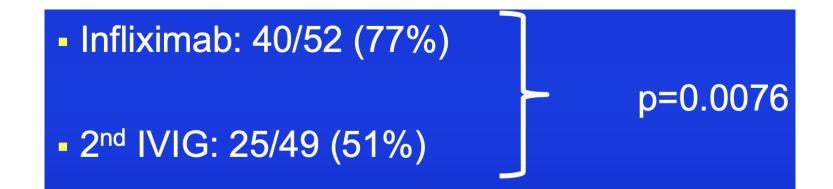
IVIG 2 g/kg IV and aspirin Adding **5 mg/kg infliximab** for patients with CAA at diagnosis

> IVIG 2 g/kg IV and aspirin Adding **10 mg/kg infliximab** for patients with CAA at diagnosis

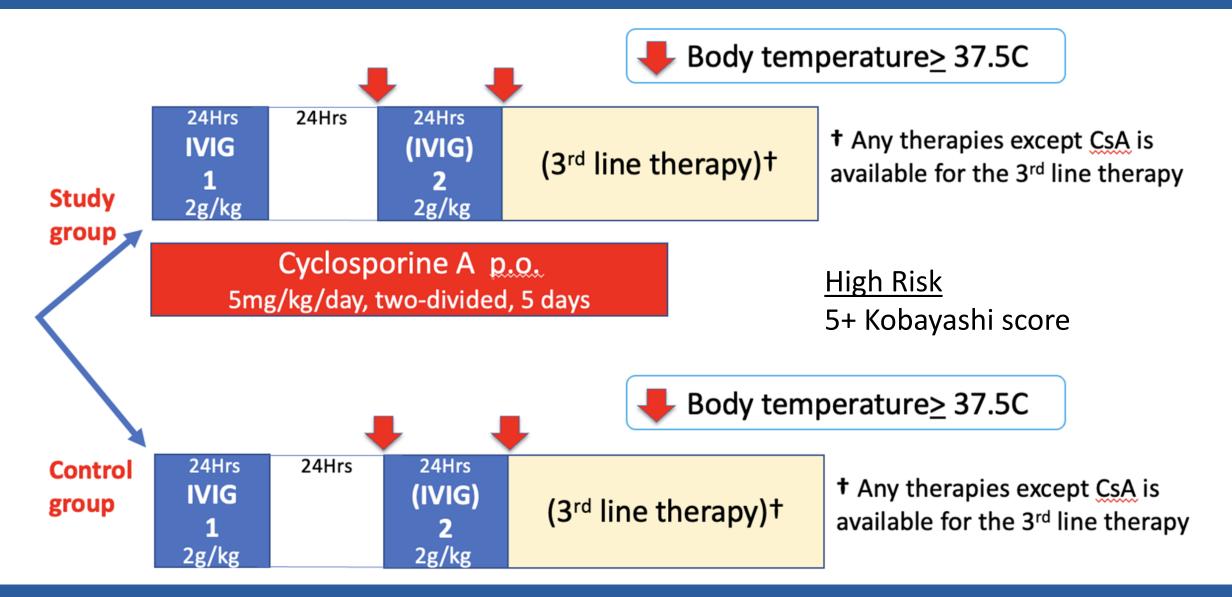
- The dose of aspirin was 80–100 mg/kg/day until 2013, changed into 30–50 mg/kg/day.
- Aspirin was reduced to 3–5 mg/kg/day at discharge.

Infliximab for Intensification of Primary Therapy

		OR (95% CI)	Adjusted P value
IVIG + infliximab 5mg/kg vs IVIG alone	⊢	1.86 (0.80-4.33)	N/S
IVIG + infliximab 10mg/kg vs IVIG alone		4.45 (1.17-16.89)	0.028
Older age	Heel	1.31 (1.08-1.60)	0.007
Female Sex	F	1.05 (0.47-2.32)	N/S
Higher Zmax at baseline		0.49 (0.30-0.81)	0.006
Bilateral CAA at baseline	⊢	1.35 (0.48-3.78)	N/S
0.1		20	


Adapted from presentation by Dr. Koichi Miyata

Infliximab for Treatment Resistant Kawasaki Disease


Primary outcome measure:

Afebrile at 24h after initiation of study treatment with no return of fever

Adapted from presentation by Dr. Adriana Tremoulet

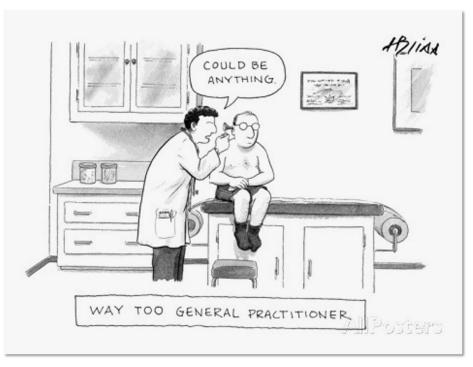
Cyclosporine A in Kawasaki Disease

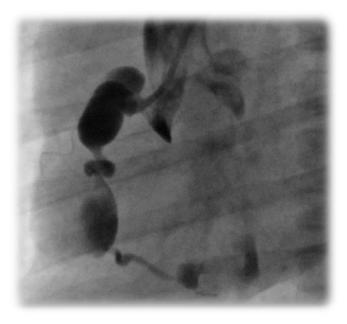
Cyclosporine A in Kawasaki Disease

	IVIG+CsA (n=86)	IVIG (n=87)	р	95%CI
The incidence of CAAs	14%	31%	0.010	0.46 (0.21 – 0.86)
CAAs in 1 segments: 12 2 segments: 0 3 segments: 0		CAAs in 1 segmen 2 segmen 3 segmen	ts: 4	Mantel- <u>Haenszel</u> analysis

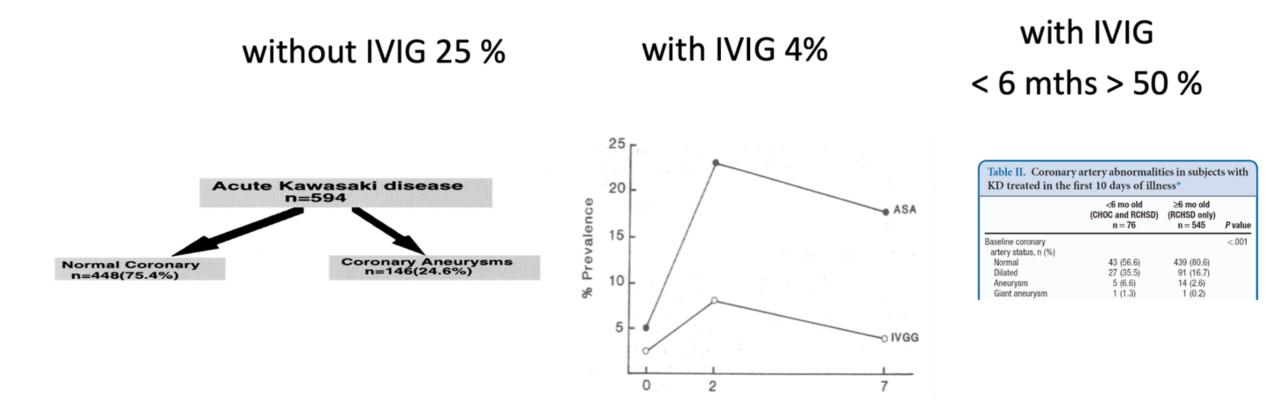
Adapted from presentation by Drs. Kakimoto and Tremoulet

Hamada H, et al. Lancet, 2019


Cyclosporine A in Kawasaki Disease


Concurrent use of steroids and Cyclosporine A in KD may increase risk of serious adverse events.

Adapted from presentation by Drs. Kakimoto and Tremoulet


Impact of Delayed or Missed Diagnosis

Impact of Delayed or Missed Diagnosis

Complications confined to large CAA ≥10 Prognosis good, low fatality rates

Diagnostic Pearls of Kawasaki Disease

Infections and Kawasaki Disease: Implications for Coronary Artery Outcome

Susanne M. Benseler, MD*‡; Brian W. McCrindle, MD, MPH, FRCPC*‡§; Earl D. Silverman, MD, FRCPC*‡; Pascal N. Tyrrell, Msc*‡; Joseph Wong,*‡; and Rae S.M. Yeung, MD, PhD, FRCPC*‡

33% of KD patients had at least one confirmed infection at time of KD diagnosis FEVER – typically "unresponsive to antipyretics" in KD

KD excluded if genuine pathogen cultured/identified from sterile site

A positive respiratory viral PCR usually compatible with KD diagnosis

A positive GAS throat swab is compatible with KD diagnosis

Think about KD in Children with Fever and

- Unwilling or unable to walk
- Culture negative "urinary tract infection" (initially diagnosed on basis of fever and urine WBC)
- Unexplained aseptic meningitis
- Culture negative shock
- Age <6 months with prolonged fever and irritability</p>
- Prolonged fever and cervical adenitis
- Other clues:
 - Eosinophilia
 - Inflamed BCG site
- There are KD subgroups

Key Characteristics of KD subgroups

Liver

- Elevated ALT, GGT, bilirubin
- Lowest CAA rate
- Highest IVIG resistance rates

Band

- Highest band neutrophil count
- Highest KD shock rate

Node

- Cervical LAD
- Highest markers of inflammation (ESR, CRP, WBC, plt)
- Lowest hemoglobin z-scores
- Young
 - Young age at onset
 - Highest CAA rate
 - Lowest IVIG resistance rates

Dr. Richard Lowe Memorial Lecture

14th International Kawasaki Disease Symposium (IKDS) August 26th – 29th, 2024 | Montreal, Canada | Hotel Bonaventure

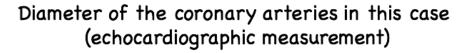
10-15 days

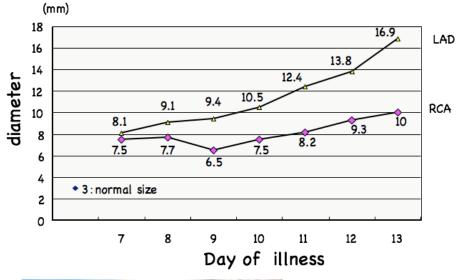
Richard Rowe Memorial Lecture

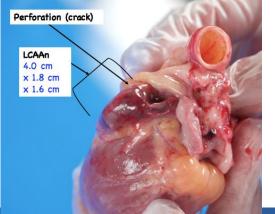
Disaster in Kawasaki Disease - Rupture of Coronary Artery Aneurysm -

> Mamoru Ayusawa MD., PhD. Faculty of Health and Medical Science, Kanagawa Institute of Technology Department of Pediatrics and Child Health, Nihon University School of Medicine

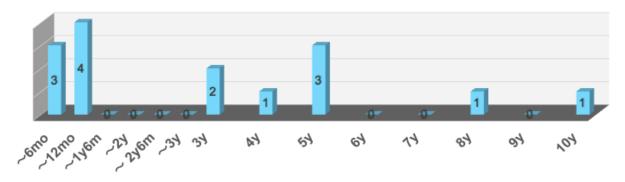
Cases with ruptured aneurysm and fatal outcomes

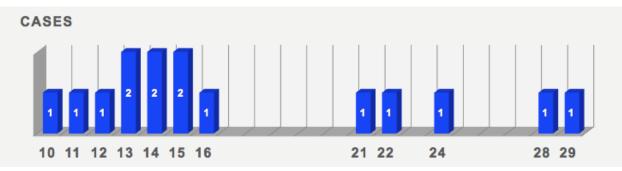

'Disaster'


- Very Rare
- Suddenly encounter
- Difficult to predict
- Fatal, and traumatic
- > No good strategy for the present


•These are typically 'Supergiant aneurysms' - CAAn grew >10 mm in diameter rapidly within

Adapted from presentation by Dr. Mamoru Ayusawa


Rupture of coronary aneurysms



Age at onset of KD

Days to Rupture from the Onset

Adapted from presentation by Dr. Mamoru Ayusawa

Rupture of coronary aneurysms

- Prevention / prediction is the most important key
- Early diagnosis and treatment
- Treatment intensification
- Need a simulation of intensive care for ≥ 10 mm coronary aneurysm in your hospital if you care severe KD patients
 - Sedative drugs, beta blockers and calcium antagonists
 - Blood pressure optimization

We need to identify the super giants

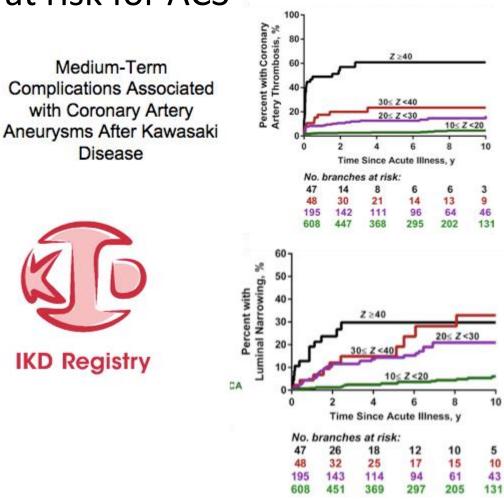
Acute Coronary Syndrome in KD

Invasive angiography survey data from European

Aprox. 200 patients / 63 % male Aprox. 280 Cardiac Catherisations (CC)

CAA rate: 2010	37.5%		
2022	75%		
2024	90%		

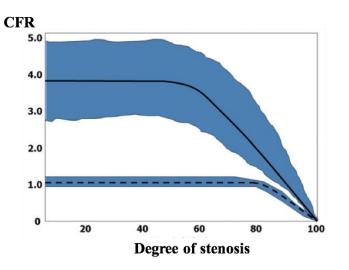
- Younger patients have higher chances of regression
- More number aneurysms >>> more likely to have regression of largest aneurysm / also to develop stenosis
- Length of aneurysm does not much affect development of stenosis
- Saccular are associated greater chances of sequelae

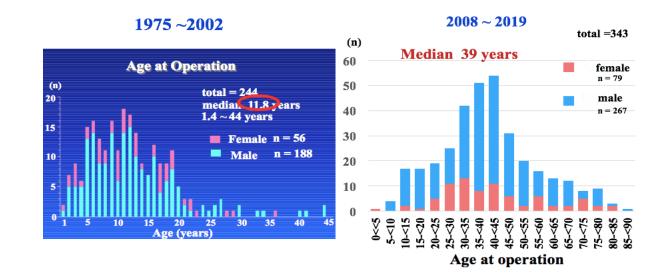


Acute Coronary Syndrome in KD

Who are at risk for ACS

Risk of thrombosis


- > LAD aneurysm
- > Aneurysm \geq 8 mm
- Most frequently in first
 90 days after diagnosis


Acute Coronary Syndrome in KD

The Japan Experience: CABG in KD

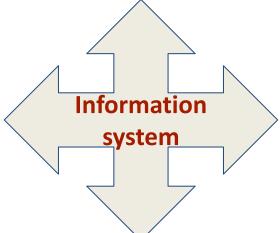
Relation between stenosis and Coronary flow reserve

Changes in age at operation in Japan

Coronary flow reserve is decreased after 85%


stenosis

Indication and timing of CABG need to be optimized


Should be performed as an elective procedure with preserved LV function

Adapted from presentation by Dr. Etsuko Tsuda

Multi-disciplinary decision making model

Clear communication system in place

Transition of Care and Canvas for Future

Why it is essential

Loss to follow-up

Needs are different

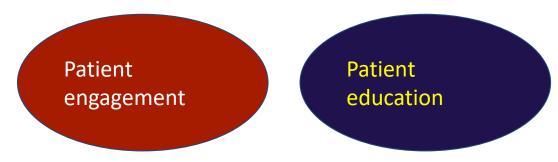
Females with KD and CALs

Transition of Care and Canvas for the Future : The Japanese Perspective KD Onset Adult KD (AKD) Transition Metabolic Risks Acute Onset Loss of & Cormorbidities & Early After Follow-up More Research Awareness among Medical Professionals Patient Education Toward Government Support Seamless Transition

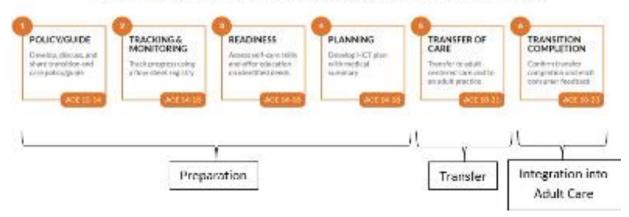
Patients once adult they want to be treated as adult

Transition of Care and Canvas for Future

Journal of the American Heart Association


AHA SCIENTIFIC STATEMENT

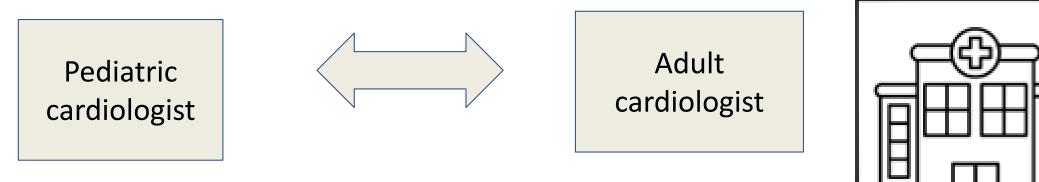
Falling Through the Cracks: The Current Gap in the Health Care Transition of Patients With Kawasaki Disease


A Scientific Statement From the American Heart Association

Nagib Dahdah, MD, MBA; Samuel C. Kung, MD, MAS; Kevin G. Friedman, MD; Ariane Marelli, MD, MPH, FAHA; John B. Gordon, MD; Ermias D. Belay, MD; Annette L. Baker, RN, MSN, CPNP, FAHA; Dhruv S. Kazi, MD, MSc, MS, FAHA; Patience H. White, MD, MA; Adriana H. Tremoulet, MD, MAS, FAHA; on behalf of the American Heart Association Rheumatic Fever, Endocarditis, Kawasaki Disease Committee of the Council on Lifelong Congenital Heart Disease and Heart Health in the Young, and the Council on Arteriosclerosis, Thrombosis and Vascular Biology

Empowerment of the patients

SIX CORE ELEMENTS[™] APPROACH AND TIMELINE FOR YOUTH TRANSITIONING FROM PEDIATRIC TO ADULT HEALTH CARE



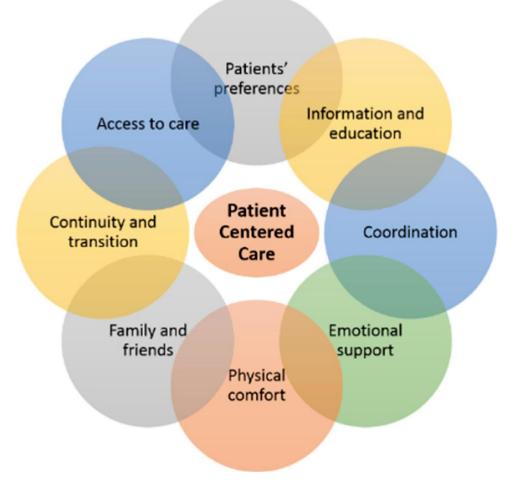
Medical summary

Health Passport

Transition of care

DEBATE: Who is going to see you once you are adult

Transition from Pediatric to Adult cardiologist is essential



KD with CAA warrants life-long expert care

Adapted from presentation by Drs. Andrew Mackie and Lucy Youngmin Eun

Most unique and critical perspective

Patient perspective

Solving Worldwide Gaps in KD Care

Guideline Issues and Gaps (Expert Opinion)

<u>Guideline Issues</u>	<u>Guideline Gaps</u>
 Update with latest evidence (in process) Integrate different guidelines into cohesive approach Clarify utility and predictive value of scoring systems Develop approach to infants < 6 months Clarify the role of the following mediations: salicylates, anticoagulants, statins Management of fever and CAA at diagnosis 	 Dissemination, education and training across specialties. Increase guideline awareness across primary providers Develop practical and easy-to-recall protocols Long-term follow-up and transition to adult services Standardize reporting of echo CA dimensions

Guideline Issues and Gaps (Roundtable)

<u>Guideline Issues</u>	Guideline Gaps
 Update with latest evidence (in process) Integrate different guidelines into cohesive approach Clarify utility and predictive value of scoring systems Develop approach to infants < 6 months Clarify the role of the following mediations: salicylates, anticoagulants, statins Management of fever and CAA at diagnosis Guidelines in different languages 	 Dissemination, education and training across specialties. Increase guideline awareness across primary providers Develop practical and easy-to-recall protocols Long-term follow-up and transition to adult services Standardize reporting of echo CA dimensions

Thank you and enjoy the final day of the conference!

Take Home Headlines: Consolidated knowledge & new trajectories 14th International Kawasaki Disease Symposium

August 29th, 2024

Audrey Dionne MD Boston Children's Hospital

Frederica Anselmi MD, Fujito Numano MD, PhD, Alan Wang MD, Matthew Elias MD, Rakesh Kumar Pilania MBBS, Luisa Berenise Gamez-Gonzalez MD

Conflict-of-Interest Disclosures

Presenter:	
Any direct financial payments including receipt of honoraria	None
Membership on advisory boards or speakers' bureaus	None
Funded grants or clinical trials	Pfizer, Boston Scientific (unrelated Kawasaki disease)
All other investments or relationships that could be seen by a reasonable, well-informed participant as having the potential to influence the content of the educational activity	None

Take Home Messages – Day 1

14th International Kawasaki Disease Symposium

August 27, 2024

Take Home Messages – Day 2 14th International Kawasaki Disease Symposium

August 28, 2024

Take Home Messages – Day 3

14th International Kawasaki Disease Symposium

August 29, 2024

Dra. Luisa Berenise Gámez González Pediatric Immunology Professor of Immunology, Faculty of Medicine Chihuahua's University Hospital Infantil de Especialidades de Chihuahua

Matthew D. Elias, MD Clinical Associate Professor of Pediatrics Attending Physician, Division of Cardiology Co-Medical Director, Cardiology Kawasaki Disease Program

The Children's Hospital of Philadelphia

CeRéMAIA

Dr. Federica Anselmi Paediatric Rheumatology University hospital of <u>Bicetre-</u> Paris Faculty of Medicine of Paris-Saclay University

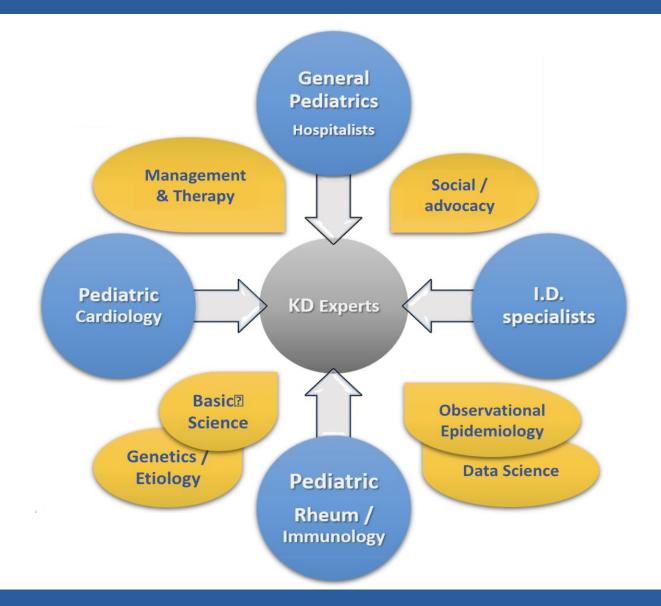
Dr Fujito Numano Fujito Numano, MD, PhD Lecturer of Pediatrics Niigata University Graduate school of Medical and Dental Sciences

Rakesh Kumar Pilania MD, DM

Post Graduate Institute of Medical Education and Research, Chandigarh, India

Alan Wang MD Ann & Robert H. Lurie Children's Hospital of Chicago, USA

Daily wrap-up



Collaboration

Multidisciplinary

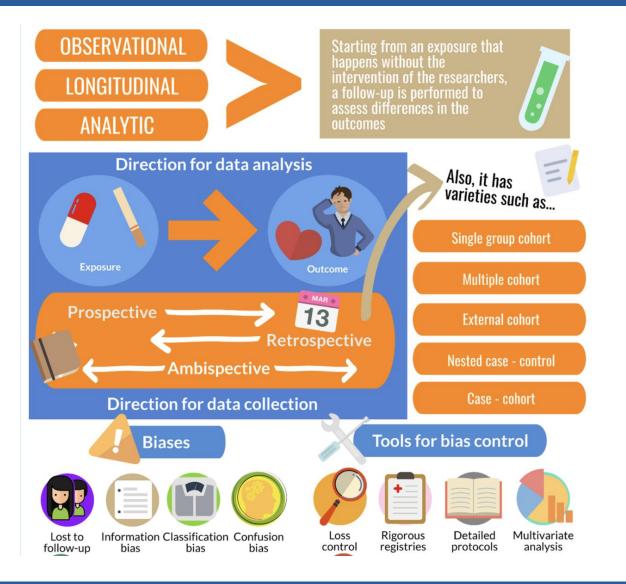
Adapted from Dahdah

International

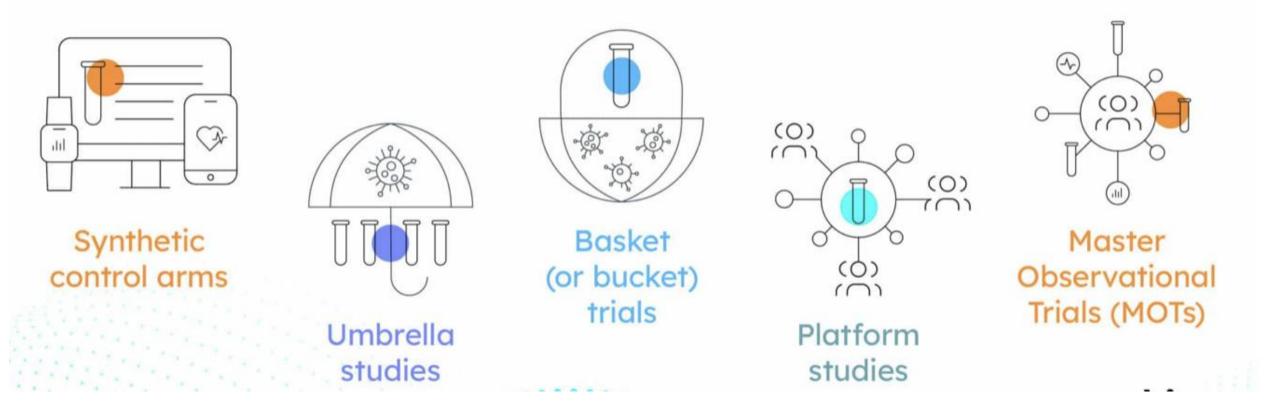
Gi Beom Kim. Clinical and Experimental Pediatrics. 2019

Working together

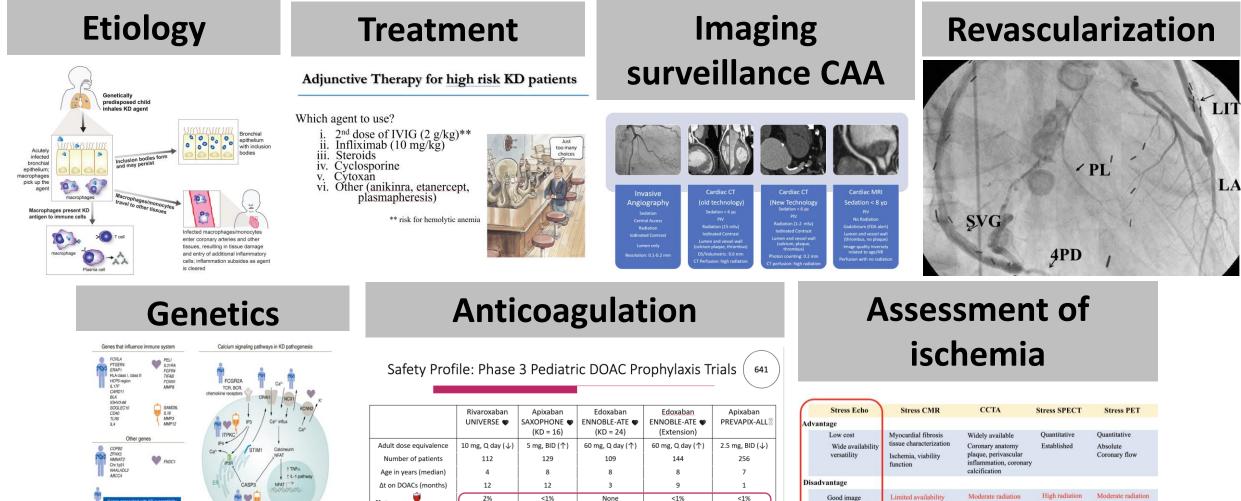
Groups – Country / Region	Year	Countries	Institutions	Members
Nationwide Survey of Epidemiology of KD in South Korea (guidance of the Korean Society of KD) South Korea	1991	1	90	10-20
Registro Regionale della Malattia di Kawasaki Emilia Romagna Italy	2002	1	10	10-20
Japan Kawasaki Disease Genome Consortium (JKDGC) Japan	2009	1	40	20-50
Kawasaki Study Group Netherland	2012	1	18	10-20
REKAMLATINA (Red de <u>Enfermedad</u> de Kawasaki <u>en América</u> Latina) Latin-America	2013	20	86	100 +
International Kawasaki Disease Registry (IKDR) N-Am / International	2013	8	51	20-50
SOCIETI UK	2015	1	10	20-50
KAWARACE Spain	2015	1	95	100 +
Kawasaki Disease Comparative Effectiveness (KIDCARE) trial USA	2016	1	30	20-50
Asia Pacific Kawasaki Disease Association Eastern Asia / South-Pacific	2016	14	30	50-100
Genetic Prediction of KD Treatment Resistance (GENESYS) USA / North-Am	2018	2	6	10-20
Indian Society of Kawasaki Disease India	2018	1	10	50-100
Cardiac Catheterization in Kawasaki Disease registry (CCinKD registry) Germany / Europe	2019	6	16	20-50
JIR COHORT KD (KAWANET) and MIS-C <i>Europe</i>	2019	11	87	20-50
AMED Study Group Japan	2020	1	150	50-100
Cape Town Kawasaki Group South Africa	2020	1	2	10-20
COVASAKI network Italy	2020	1	18	20-50
KAWARABI (Kawasaki Disease Arab Initiative) MENA	2021	14	24	20-50
Kawasaki disease Sweden (SwedKD) Sweden	2021	1	1	10-20
Collaborated Surveillance by 4 Associations Working for Pediatric Critical Medicine (JMKsurvey) Japan	2022	1	50	10-20


Working together

Working Together to Get Numbers


Observational Studies


'The most dangerous pharse in language is 'We've always done it that way -Admiral Grace Hopper


Re-think Clinical Trial Designs

Bioinformatics and Artificial Intelligence

Gaps in knowledge

Figure 3. Pathways and a	nanas influancing	VD susceptibility	amostuo bac	Eigure concept and	decign are courter	of Chirato Shimitu

	Rivaroxaban UNIVERSE 🎔	Apixaban SAXOPHONE ♥ (KD = 16)	Edoxaban ENNOBLE-ATE ♥ (KD = 24)	Edoxaban ENNOBLE-ATE ((Extension)	Apixaban PREVAPIX-ALL [®]
Adult dose equivalence	10 mg, Q day (↓)	5 mg, BID (个)	60 mg, Q day (个)	60 mg, Q day (个)	2.5 mg, BID (↓)
Number of patients	112	129	109	144	256
Age in years (median)	4	8	8	8	7
Δt on DOACs (months)	12	12	3	9	1
w = 💭	2%	<1%	None	<1%	<1%
loverall)	6%	<1%	<1%	<1%	4%
) O	33%	36%	NA	NA	NA

Legends: KD. Kawasaki disease: mg. milligram: BID, twice a day: Q day, once a day: VTE, venous thromboembolism: At, time interval: DOAC, direct oral anticoagulant: NA, not available

(Picano et al. Eur Heart J Cardiovasc Imaging 2024, revised)

High cost

exposure

High cost

Implantable devices

Gadolinium contrast

Claustrophobia

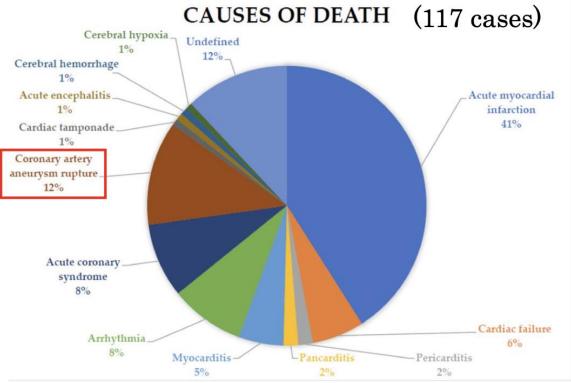
needed

Ouality needed

Operator dependence exposure

contrast

Nenhrotoxic iodine


Correlation with Outcomes

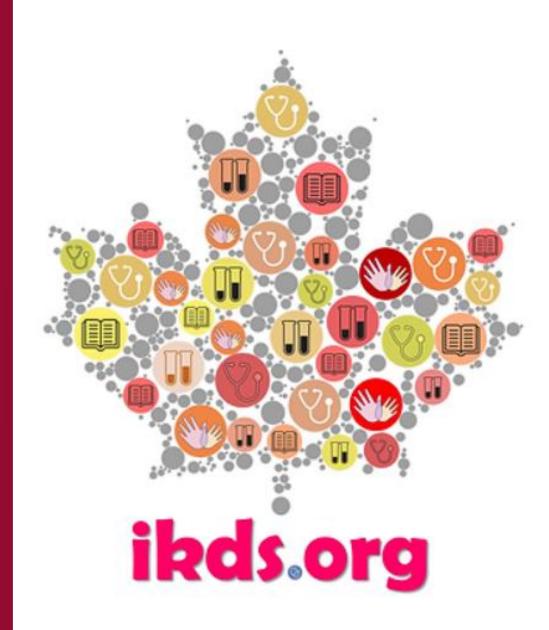
Article

Autoptic Findings in Cases of Sudden Death Due to Kawasaki Disease

Giacomo Visi ¹⁽⁰⁾, Federica Spina ¹⁽¹⁾, Fabio Del Duca ²⁽³⁾, Alice Chiara Manetti ³⁽³⁾, Aniello Maiese ^{1,*}, Raffaele La Russa ⁴⁽⁰⁾, Paola Frati ²⁽¹⁾ and Vittorio Fineschi ²⁽⁰⁾

Transition of Care

T



14th International Kawasaki Disease Symposium (IKDS)

Montreal, Canada Hotel Bonaventure

